Interpolation theorems for a family of spanning subgraphs
Czechoslovak Mathematical Journal, Tome 48 (1998) no. 1, pp. 45-53.

Voir la notice de l'article dans Czech Digital Mathematics Library

Let $G$ be a graph with order $p$, size $q$ and component number $\omega $. For each $i$ between $p - \omega $ and $q$, let ${\mathcal C}_{i}(G)$ be the family of spanning $i$-edge subgraphs of $G$ with exactly $\omega $ components. For an integer-valued graphical invariant $\varphi $, if $H \rightarrow H^{\prime }$ is an adjacent edge transformation (AET) implies $|\varphi (H) - \varphi (H^{\prime })| \le 1$, then $\varphi $ is said to be continuous with respect to AET. Similarly define the continuity of $\varphi $ with respect to simple edge transformation (SET). Let $M_{j}(\varphi )$ and $m_{j}(\varphi )$ be the invariants defined by $M_{j}(\varphi )(H) = \max _{T \in {\mathcal C}_{j}(H)} \varphi (T)$, $ m_{j}(\varphi )(H) = \min _{T \in {\mathcal C}_{j}(H)} \varphi (T) $. It is proved that both $M_{p - \omega }(\varphi )$ and $m_{p - \omega }(\varphi )$ interpolate over $\mathbf{{\mathcal C}_{i}(G)}$, $ p - \omega \le i \le q$, if $\varphi $ is continuous with respect to AET, and that $M_{j}(\varphi )$ and $m_{j}(\varphi )$ interpolate over $\mathbf{{\mathcal C}_{i}(G)}$, $p - \omega \le j \le i \le q$, if $\varphi $ is continuous with respect to SET. In this way a lot of known interpolation results, including a theorem due to Schuster etc., are generalized.
Classification : 05C99
@article{CMJ_1998__48_1_a3,
     author = {Zhou, Sanming},
     title = {Interpolation theorems for a family of spanning subgraphs},
     journal = {Czechoslovak Mathematical Journal},
     pages = {45--53},
     publisher = {mathdoc},
     volume = {48},
     number = {1},
     year = {1998},
     mrnumber = {1614068},
     zbl = {0927.05076},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/CMJ_1998__48_1_a3/}
}
TY  - JOUR
AU  - Zhou, Sanming
TI  - Interpolation theorems for a family of spanning subgraphs
JO  - Czechoslovak Mathematical Journal
PY  - 1998
SP  - 45
EP  - 53
VL  - 48
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/CMJ_1998__48_1_a3/
LA  - en
ID  - CMJ_1998__48_1_a3
ER  - 
%0 Journal Article
%A Zhou, Sanming
%T Interpolation theorems for a family of spanning subgraphs
%J Czechoslovak Mathematical Journal
%D 1998
%P 45-53
%V 48
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/CMJ_1998__48_1_a3/
%G en
%F CMJ_1998__48_1_a3
Zhou, Sanming. Interpolation theorems for a family of spanning subgraphs. Czechoslovak Mathematical Journal, Tome 48 (1998) no. 1, pp. 45-53. https://geodesic-test.mathdoc.fr/item/CMJ_1998__48_1_a3/