Homomorphisms between A-projective Abelian groups and left Kasch-rings
Czechoslovak Mathematical Journal, Tome 48 (1998) no. 1, pp. 31-43.

Voir la notice de l'article dans Czech Digital Mathematics Library

Glaz and Wickless introduced the class G of mixed abelian groups A which have finite torsion-free rank and satisfy the following three properties: i) Ap is finite for all primes p, ii) A is isomorphic to a pure subgroup of ΠpAp, and iii) Hom(A,tA) is torsion. A ring R is a left Kasch ring if every proper right ideal of R has a non-zero left annihilator. We characterize the elements A of G such that E(A)/tE(A) is a left Kasch ring, and discuss related results.
Classification : 20K20, 20K21, 20K25, 20K30
Mots-clés : mixed Abelian group; endomorphism ring; Kasch ring; A-solvable group
@article{CMJ_1998__48_1_a2,
     author = {Albrecht, Ulrich and Jeong, Jong-Woo},
     title = {Homomorphisms between $A$-projective {Abelian} groups and left {Kasch-rings}},
     journal = {Czechoslovak Mathematical Journal},
     pages = {31--43},
     publisher = {mathdoc},
     volume = {48},
     number = {1},
     year = {1998},
     mrnumber = {1614064},
     zbl = {0931.20043},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/CMJ_1998__48_1_a2/}
}
TY  - JOUR
AU  - Albrecht, Ulrich
AU  - Jeong, Jong-Woo
TI  - Homomorphisms between $A$-projective Abelian groups and left Kasch-rings
JO  - Czechoslovak Mathematical Journal
PY  - 1998
SP  - 31
EP  - 43
VL  - 48
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/CMJ_1998__48_1_a2/
LA  - en
ID  - CMJ_1998__48_1_a2
ER  - 
%0 Journal Article
%A Albrecht, Ulrich
%A Jeong, Jong-Woo
%T Homomorphisms between $A$-projective Abelian groups and left Kasch-rings
%J Czechoslovak Mathematical Journal
%D 1998
%P 31-43
%V 48
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/CMJ_1998__48_1_a2/
%G en
%F CMJ_1998__48_1_a2
Albrecht, Ulrich; Jeong, Jong-Woo. Homomorphisms between $A$-projective Abelian groups and left Kasch-rings. Czechoslovak Mathematical Journal, Tome 48 (1998) no. 1, pp. 31-43. https://geodesic-test.mathdoc.fr/item/CMJ_1998__48_1_a2/