Influence of numerical diffusion on the growth rate of viscous fingers in~the~numerical implementation of~the~Peaceman model by the finite volume method
Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 68 (2022) no. 4, pp. 553-563.

Voir la notice de l'article provenant de la source Math-Net.Ru

A numerical model of oil displacement by a mixture of water and polymer based on the Peaceman model is considered. Numerical experiments were carried out using the DuMux package, which is a software library designed for modeling nonstationary hydrodynamic problems in porous media. The software package uses the vertex-centered variant of finite volume method. The effect of diffusion on the growth rate of “viscous fingers” has been studied. The dependencies of the leading front velocity on the value of model diffusion are obtained for three viscosity models. It is shown that the effect of numerical diffusion on the growth rate of “viscous fingers” imposes limitations on calculations for small values of model diffusion.
Mots-clés : mathematical modeling, Peaceman model, viscous fingers, porous media, DuMux package, numerical diffusion.
@article{CMFD_2022_68_4_a0,
     author = {D. E. Apushkinskaya and G. G. Lazareva and V. A. Okishev},
     title = {Influence of numerical diffusion on the growth rate of viscous fingers in~the~numerical implementation {of~the~Peaceman} model by the finite volume method},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {553--563},
     publisher = {mathdoc},
     volume = {68},
     number = {4},
     year = {2022},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/CMFD_2022_68_4_a0/}
}
TY  - JOUR
AU  - D. E. Apushkinskaya
AU  - G. G. Lazareva
AU  - V. A. Okishev
TI  - Influence of numerical diffusion on the growth rate of viscous fingers in~the~numerical implementation of~the~Peaceman model by the finite volume method
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2022
SP  - 553
EP  - 563
VL  - 68
IS  - 4
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/CMFD_2022_68_4_a0/
LA  - ru
ID  - CMFD_2022_68_4_a0
ER  - 
%0 Journal Article
%A D. E. Apushkinskaya
%A G. G. Lazareva
%A V. A. Okishev
%T Influence of numerical diffusion on the growth rate of viscous fingers in~the~numerical implementation of~the~Peaceman model by the finite volume method
%J Contemporary Mathematics. Fundamental Directions
%D 2022
%P 553-563
%V 68
%N 4
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/CMFD_2022_68_4_a0/
%G ru
%F CMFD_2022_68_4_a0
D. E. Apushkinskaya; G. G. Lazareva; V. A. Okishev. Influence of numerical diffusion on the growth rate of viscous fingers in~the~numerical implementation of~the~Peaceman model by the finite volume method. Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 68 (2022) no. 4, pp. 553-563. https://geodesic-test.mathdoc.fr/item/CMFD_2022_68_4_a0/

[1] Aziz Kh., Settari E., Matematicheskoe modelirovanie plastovykh sistem, Inst. komp. issl., M.–Izhevsk, 2004

[2] Lamb G., Gidrodinamika, Gostekhizdat, M.–L., 1947

[3] Logvinov O. A., “Ob ustoichivosti bokovoi poverkhnosti vyazkikh paltsev, obrazuyuschikhsya pri vytesnenii zhidkosti iz yacheiki Khele–Shou”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 2011, no. 2, 40–46 | MR

[4] Tyatyushkina E. S., Kozelkov A. S., Kurkin A. A., Kurulin V. V., Efremov V. R., Utkin D. A., “Otsenka chislennoi diffuzii metoda konechnykh ob'emov pri modelirovanii poverkhnostnykh voln”, Vychisl. tekhn, 24:1 (2019), 106–119

[5] Arun R., Dawson S. T. M., Schmid P. J., Laskari A., McKeon B. J., “Control of instability by injection rate oscillations in a radial Hele–Shaw cell”, Phys. Rev. Fluids, 5 (2020), 123902 | DOI

[6] Bakharev F., Campoli L., Enin A., Matveenko S., Petrova Y., Tikhomirov S., Yakovlev A., “Numerical investigation of viscous fingering phenomenon for raw field data”, Transp. Porous Med., 132 (2020), 443–464 | DOI | MR

[7] Bakharev F., Enin A., Groman A., Kalyuzhnuk A., Matveenko S., Petrova Yu., Starkov I., Tikhomirov S. S., “Velocity of viscous fingers in miscible displacement”, J. Comput. Appl. Math., 402 (2022), 113808 | DOI | MR

[8] Booth R. J. S., Miscible flow through porous media, Kand. diss., 2008

[9] Booth R. J. S., “On the growth of the mixing zone in miscible viscous fingering”, J. Fluid Mech., 655 (2010), 527–539 | DOI | MR

[10] Chen Ch., Yang X., “A second-order time accurate and fully-decoupled numerical scheme of the Darcy–Newtonian–Nematic model for two-phase complex fluids confined in the Hele–Shaw cell”, J. Comput. Phys., 456 (2022), 111026 | DOI | MR

[11] De Wit A., Homsy G. M., “Viscous fingering in reaction-diffusion systems”, J. Chem. Phys., 110 (1999), 8663–8675 | DOI | MR

[12] $\rm DuMu^x$ Code Documentation (doxygen), Ver. 3.5., 2022 https://dumux.org/docs/doxygen/master/a01628.html

[13] $\rm DuMu^x$ Handbook, Ver. 3.5., 2022 http://dumux.org

[14] Fontana J., Juel A., Bergemann N., Heil M., Hazel A., “Modelling finger propagation in elasto-rigid channels”, J. Fluid Mech., 916 (2021), A27 | DOI | MR

[15] Karimi F., Maleki Jirsaraei N., Azizi S., “Simulation of viscous fingering due to Saffman–Taylor instability in Hele–Shaw cell”, J. Nanoelectron. Materials, 12:3 (2019), 309–318

[16] Kupervasser O., “Laplacian growth without surface tension in filtration combustion: analytical pole solution”, Pole solutions for flame front propagation. Mathematical and analytical techniques with applications to engineering, Springer, Cham, 2015, 85–107 | DOI | MR

[17] Lu D., Municchi F., Christov I. C., “Computational analysis of interfacial dynamics in angled Hele–Shaw cells: instability regimes”, Transp. Porous Med., 131 (2020), 907–934 | DOI | MR

[18] Lustri Ch. J., Green Ch. C., McCue S. W., “Hele–Shaw bubble via exponential asymptotics”, SIAM J. Appl. Math., 80:1 (2020), 289–311 | DOI | MR

[19] Noskov M. D., Istomin A. D., Kesler A. G., “Stochastic-deterministic modeling of the development of hydrodynamic instability in filtration of mixing fluids”, J. Eng. Phys. Thermophys., 75 (2002), 352–358 | DOI | MR

[20] Saffman P. G., Taylor G., “The penetration of a fluid into a porous medium or a Hele–Shaw cell containing a more viscous fluid”, Proc. Roy. Soc. London. A, 245 (1958), 312–329 | DOI | MR

[21] Singh P., Lalitha R., Mondal S., “Saffman–Taylor instability in a radial Hele–Shaw cell for a shear-dependent rheological fluid”, J. Non-Newtonian Fluid Mech., 294 (2021), 104579 | DOI | MR

[22] Skopintsev A. M., Dontsov E. V., Kovtunenko P. V., Baykin A. N., Golovin S. V., “The coupling of an enhanced pseudo-3D model for hydraulic fracturing with a proppant transport model”, Eng. Fracture Mech., 236 (2020), 107177 | DOI

[23] Smirnov N. N., Kisselev A. B., Nikitin V. F., Zvyaguin A. V., Thiercelin M., Legros J. C., “Hydraulic fracturing and filtration in porous medium”, SPE Russian Oil and Gas Technical Conference and Exhibition (Moscow, Russia, October 2006)

[24] Smirnov N. N., Nikitin V. F., Maximenko A., Thiercelin M., Legros J. C., “Instability and mixing flux in frontal displacement of viscous fluids from porous media”, Phys. Fluids, 17 (2005), 084102 | DOI | MR

[25] Sorbie K. S., Polymer-improved oil recovery, Springer, Dordrecht, 1991

[26] Tan C. T., Homsy G. M., Phys. Fluids, 29:11 (1986), Stability of miscible displacements in porous media: rectilinear flow, 3549–3556 | DOI

[27] Yang X., “Fully-discrete, decoupled, second-order time-accurate and energy stable finite element numerical scheme of the Cahn–Hilliard binary surfactant model confined in the Hele–Shaw cell”, ESAIM Math. Model. Numer. Anal, 56:2 (2022), 651–678 | DOI | MR