Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2022_68_4_a0, author = {D. E. Apushkinskaya and G. G. Lazareva and V. A. Okishev}, title = {Influence of numerical diffusion on the growth rate of viscous fingers in~the~numerical implementation {of~the~Peaceman} model by the finite volume method}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {553--563}, publisher = {mathdoc}, volume = {68}, number = {4}, year = {2022}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/CMFD_2022_68_4_a0/} }
TY - JOUR AU - D. E. Apushkinskaya AU - G. G. Lazareva AU - V. A. Okishev TI - Influence of numerical diffusion on the growth rate of viscous fingers in~the~numerical implementation of~the~Peaceman model by the finite volume method JO - Contemporary Mathematics. Fundamental Directions PY - 2022 SP - 553 EP - 563 VL - 68 IS - 4 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/CMFD_2022_68_4_a0/ LA - ru ID - CMFD_2022_68_4_a0 ER -
%0 Journal Article %A D. E. Apushkinskaya %A G. G. Lazareva %A V. A. Okishev %T Influence of numerical diffusion on the growth rate of viscous fingers in~the~numerical implementation of~the~Peaceman model by the finite volume method %J Contemporary Mathematics. Fundamental Directions %D 2022 %P 553-563 %V 68 %N 4 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/CMFD_2022_68_4_a0/ %G ru %F CMFD_2022_68_4_a0
D. E. Apushkinskaya; G. G. Lazareva; V. A. Okishev. Influence of numerical diffusion on the growth rate of viscous fingers in~the~numerical implementation of~the~Peaceman model by the finite volume method. Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 68 (2022) no. 4, pp. 553-563. https://geodesic-test.mathdoc.fr/item/CMFD_2022_68_4_a0/
[1] Aziz Kh., Settari E., Matematicheskoe modelirovanie plastovykh sistem, Inst. komp. issl., M.–Izhevsk, 2004
[2] Lamb G., Gidrodinamika, Gostekhizdat, M.–L., 1947
[3] Logvinov O. A., “Ob ustoichivosti bokovoi poverkhnosti vyazkikh paltsev, obrazuyuschikhsya pri vytesnenii zhidkosti iz yacheiki Khele–Shou”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 2011, no. 2, 40–46 | MR
[4] Tyatyushkina E. S., Kozelkov A. S., Kurkin A. A., Kurulin V. V., Efremov V. R., Utkin D. A., “Otsenka chislennoi diffuzii metoda konechnykh ob'emov pri modelirovanii poverkhnostnykh voln”, Vychisl. tekhn, 24:1 (2019), 106–119
[5] Arun R., Dawson S. T. M., Schmid P. J., Laskari A., McKeon B. J., “Control of instability by injection rate oscillations in a radial Hele–Shaw cell”, Phys. Rev. Fluids, 5 (2020), 123902 | DOI
[6] Bakharev F., Campoli L., Enin A., Matveenko S., Petrova Y., Tikhomirov S., Yakovlev A., “Numerical investigation of viscous fingering phenomenon for raw field data”, Transp. Porous Med., 132 (2020), 443–464 | DOI | MR
[7] Bakharev F., Enin A., Groman A., Kalyuzhnuk A., Matveenko S., Petrova Yu., Starkov I., Tikhomirov S. S., “Velocity of viscous fingers in miscible displacement”, J. Comput. Appl. Math., 402 (2022), 113808 | DOI | MR
[8] Booth R. J. S., Miscible flow through porous media, Kand. diss., 2008
[9] Booth R. J. S., “On the growth of the mixing zone in miscible viscous fingering”, J. Fluid Mech., 655 (2010), 527–539 | DOI | MR
[10] Chen Ch., Yang X., “A second-order time accurate and fully-decoupled numerical scheme of the Darcy–Newtonian–Nematic model for two-phase complex fluids confined in the Hele–Shaw cell”, J. Comput. Phys., 456 (2022), 111026 | DOI | MR
[11] De Wit A., Homsy G. M., “Viscous fingering in reaction-diffusion systems”, J. Chem. Phys., 110 (1999), 8663–8675 | DOI | MR
[12] $\rm DuMu^x$ Code Documentation (doxygen), Ver. 3.5., 2022 https://dumux.org/docs/doxygen/master/a01628.html
[13] $\rm DuMu^x$ Handbook, Ver. 3.5., 2022 http://dumux.org
[14] Fontana J., Juel A., Bergemann N., Heil M., Hazel A., “Modelling finger propagation in elasto-rigid channels”, J. Fluid Mech., 916 (2021), A27 | DOI | MR
[15] Karimi F., Maleki Jirsaraei N., Azizi S., “Simulation of viscous fingering due to Saffman–Taylor instability in Hele–Shaw cell”, J. Nanoelectron. Materials, 12:3 (2019), 309–318
[16] Kupervasser O., “Laplacian growth without surface tension in filtration combustion: analytical pole solution”, Pole solutions for flame front propagation. Mathematical and analytical techniques with applications to engineering, Springer, Cham, 2015, 85–107 | DOI | MR
[17] Lu D., Municchi F., Christov I. C., “Computational analysis of interfacial dynamics in angled Hele–Shaw cells: instability regimes”, Transp. Porous Med., 131 (2020), 907–934 | DOI | MR
[18] Lustri Ch. J., Green Ch. C., McCue S. W., “Hele–Shaw bubble via exponential asymptotics”, SIAM J. Appl. Math., 80:1 (2020), 289–311 | DOI | MR
[19] Noskov M. D., Istomin A. D., Kesler A. G., “Stochastic-deterministic modeling of the development of hydrodynamic instability in filtration of mixing fluids”, J. Eng. Phys. Thermophys., 75 (2002), 352–358 | DOI | MR
[20] Saffman P. G., Taylor G., “The penetration of a fluid into a porous medium or a Hele–Shaw cell containing a more viscous fluid”, Proc. Roy. Soc. London. A, 245 (1958), 312–329 | DOI | MR
[21] Singh P., Lalitha R., Mondal S., “Saffman–Taylor instability in a radial Hele–Shaw cell for a shear-dependent rheological fluid”, J. Non-Newtonian Fluid Mech., 294 (2021), 104579 | DOI | MR
[22] Skopintsev A. M., Dontsov E. V., Kovtunenko P. V., Baykin A. N., Golovin S. V., “The coupling of an enhanced pseudo-3D model for hydraulic fracturing with a proppant transport model”, Eng. Fracture Mech., 236 (2020), 107177 | DOI
[23] Smirnov N. N., Kisselev A. B., Nikitin V. F., Zvyaguin A. V., Thiercelin M., Legros J. C., “Hydraulic fracturing and filtration in porous medium”, SPE Russian Oil and Gas Technical Conference and Exhibition (Moscow, Russia, October 2006)
[24] Smirnov N. N., Nikitin V. F., Maximenko A., Thiercelin M., Legros J. C., “Instability and mixing flux in frontal displacement of viscous fluids from porous media”, Phys. Fluids, 17 (2005), 084102 | DOI | MR
[25] Sorbie K. S., Polymer-improved oil recovery, Springer, Dordrecht, 1991
[26] Tan C. T., Homsy G. M., Phys. Fluids, 29:11 (1986), Stability of miscible displacements in porous media: rectilinear flow, 3549–3556 | DOI
[27] Yang X., “Fully-discrete, decoupled, second-order time-accurate and energy stable finite element numerical scheme of the Cahn–Hilliard binary surfactant model confined in the Hele–Shaw cell”, ESAIM Math. Model. Numer. Anal, 56:2 (2022), 651–678 | DOI | MR