Nonlocality of Reaction-Diffusion Equations Induced by Delay: Biological Modeling and Nonlinear Dynamics
Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Differential and Functional-Differential Equations — Satellite of International Congress of Mathematicians ICM-2002 (Moscow, MAI, 11–17 August, 2002). Part 1, Tome 1 (2003), pp. 84-120.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present a short survey on the biological modeling, dynamics analysis, and numerical simulation of nonlocal spatial effects, induced by time delays, in diffusion models for a single species confined to either a finite or an infinite domain. The nonlocality, a weighted average in space, arises when account is taken of the fact that individuals have been at different points in space at previous times. We discuss and compare two existing approaches to correctly derive the spatial averaging kernels, and we summarize some of the recent developments in both qualitative and numerical analysis of the nonlinear dynamics, including the existence, uniqueness (up to a translation), and stability of traveling wave fronts and periodic spatio-temporal patterns of the model equations in unbounded domains and the linear stability, boundedness, global convergence of solutions and bifurcations of the model equations in finite domains.
@article{CMFD_2003_1_a5,
     author = {S. A. Gourley and J. W.-H. So and Wu Jian Hong},
     title = {Nonlocality of {Reaction-Diffusion} {Equations} {Induced} by {Delay:} {Biological} {Modeling} and {Nonlinear} {Dynamics}},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {84--120},
     publisher = {mathdoc},
     volume = {1},
     year = {2003},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/CMFD_2003_1_a5/}
}
TY  - JOUR
AU  - S. A. Gourley
AU  - J. W.-H. So
AU  - Wu Jian Hong
TI  - Nonlocality of Reaction-Diffusion Equations Induced by Delay: Biological Modeling and Nonlinear Dynamics
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2003
SP  - 84
EP  - 120
VL  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/CMFD_2003_1_a5/
LA  - ru
ID  - CMFD_2003_1_a5
ER  - 
%0 Journal Article
%A S. A. Gourley
%A J. W.-H. So
%A Wu Jian Hong
%T Nonlocality of Reaction-Diffusion Equations Induced by Delay: Biological Modeling and Nonlinear Dynamics
%J Contemporary Mathematics. Fundamental Directions
%D 2003
%P 84-120
%V 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/CMFD_2003_1_a5/
%G ru
%F CMFD_2003_1_a5
S. A. Gourley; J. W.-H. So; Wu Jian Hong. Nonlocality of Reaction-Diffusion Equations Induced by Delay: Biological Modeling and Nonlinear Dynamics. Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Differential and Functional-Differential Equations — Satellite of International Congress of Mathematicians ICM-2002 (Moscow, MAI, 11–17 August, 2002). Part 1, Tome 1 (2003), pp. 84-120. https://geodesic-test.mathdoc.fr/item/CMFD_2003_1_a5/

[1] Aiello W. G., Freedman H. I., “A time-delay model of single species growth with stage structure”, Math. Biosci., 101 (1990), 139–153 | DOI | MR | Zbl

[2] Aikman D., Hewitt G., “An experimental investigation of the rate and form of dispersal in grasshoppers”, J. Appl. Ecol., 9 (1972), 807–817 | DOI

[3] Aronson D. G., “The asymptotic speed of a propagation of a simple epidemic”, Res. Notes Math., 14 (1977), 1–23 | MR

[4] Aronson D. G., Weinberger H. F., “Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation”, Lect. Notes Math., 446 (1975), 5–49 | DOI | MR | Zbl

[5] Aronson D. G., Weinberger H. F., “Multidimensional nonlinear diffusion arising in population genetics”, Adv. Math., 30 (1978), 33–76 | DOI | MR | Zbl

[6] Ashwin P. B., Bartuccelli M. V., Bridges T. J., Gourley S. A., “Travelling fronts for the KPP equation with spatio-temporal delay”, Z. Angew. Math. Phys., 53 (2002), 103–122 | DOI | MR | Zbl

[7] Britton N. F., Reaction-diffusion equations and their applications to biology, Academic Press, New York, 1986 | MR | Zbl

[8] Britton N. F., “Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model”, SIAM J. Appl. Math., 50 (1990), 1663–1688 | DOI | MR | Zbl

[9] Chow S. N., Lin X. B., Mallet-Paret J., “Transition layers for singularly perturbed delay differential equations with monotone nonlinearities”, J. Dyn. Differ. Equations, 1 (1989), 3–43 | DOI | MR | Zbl

[10] Crandall M. G., Rabinowitz P. H., “Mathematical theory of bifurcation”, Bifurcation phenomena in mathematical physics and related topics, eds. Bardos C., Bessis D., Reidel D., Dordrecht, 1980, 3–46 | MR | Zbl

[11] Cushing J. M., Integrodifferential equations and delay models in population dynamics, Springer-Verlag, Heidelberg, 1977 | MR

[12] Dance N., Hess P., “Stability of fixed points for order-preserving discrete-time dynamical systems”, J. Reine Angew. Math., 419 (1991), 125–139 | MR | Zbl

[13] Diekmann O., “Thresholds and traveling waves for the geographical spread of infection”, J. Math. Biol., 69 (1978), 109–130 | DOI | MR

[14] Diekmann O., “Run for your life, a note on the asymptotic speed of propagation of an epidemic”, J. Differ. Equations, 33 (1979), 58–73 | DOI | MR | Zbl

[15] Faria T., Huang W., Wu J. H., Traveling wave solutions for time delayed reaction-diffusion equations with non-local response, Preprint, 2002 | MR

[16] Fort J., Méndez V., “Wavefronts in time-delayed reaction-diffusion systems. Theory and comparison to experiment”, Rep. Progr. Phys., 65 (2002), 895–954 | DOI

[17] Huang H., Longeway J., Vieira T., Wu J. H., Aggregation and heterogeneity from the nonlinear dynamic interaction of birth, maturation and spatial migration, Nonlinear Anal., Real World Applications, 2002 | MR

[18] Fisher R. A., “The advance of advantageous genes”, Ann. Eugenics, 7 (1937), 355–369 | DOI | Zbl

[19] Furter J., Grinfeld M., “Local vs. nonlocal interactions in population dynamics”, J. Math. Biol., 27 (1989), 65–80 | MR | Zbl

[20] Gander M., Mei M., Schmidt G., So J. W.-H., Stability of traveling waves for a nonlocal time-delayed reaction-diffusion equation, Preprint, 2002

[21] Glass L., Mackey M. C., “Oscillations and chaos in physiological control systems”, Science, 197 (1977), 287–289 | DOI

[22] Glass L., Mackey M. C., “Pathological conditions resulting from instabilities in physiological control systems”, Ann. N. Y. Acad. Sci., 316 (1979), 214–235 | DOI | Zbl

[23] Gopalsamy K., Stability and oscillations in delay differential equations of population dynamics, Kluwer, Dordrecht, 1992 | MR | Zbl

[24] Gourley S. A., “Traveling front solutions of a nonlocal Fisher equation”, J. Math. Biol., 41 (2000), 272–284 | DOI | MR | Zbl

[25] Gourley S. A., Britton N. F., “Instability of travelling wave solutions of a population model with nonlocal effects”, IMA J. Appl. Math., 51 (1993), 299–310 | DOI | MR | Zbl

[26] Gourley S. A., Britton N. F., “A predator prey reaction diffusion system with nonlocal effects”, J. Math. Biol., 34 (1996), 297–333 | MR | Zbl

[27] Gourley S. A., Bartuccelli M. V., “Parameter domains for instability of uniform states in systems with many delays”, J. Math. Biol., 35 (1997), 843–867 | DOI | MR | Zbl

[28] Gourley S. A., Kuang Y., “Wavefronts and global stability in a time-delayed population model with stage structure”, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci., 2002 | MR

[29] Gourley S. A., Ruan S., “Dynamics of the diffusive Nicholson's blowflies equation with distributed delays”, Proc. R. Soc. Edinb., Sect. A., Math., 130 (2000), 1275–1291 | DOI | MR | Zbl

[30] Gourley S. A., So J. W. H., “Dynamics of a food-limited population model incorporating nonlocal delays on a finite domain”, J. Math. Biol., 44 (2002), 49–78 | DOI | MR | Zbl

[31] Gourley S. A., Chaplain M. A. J., “Travelling fronts in a food-limited population model with time delay”, Proc. R. Soc. Edinb., Sect. A., Math., 132 (2002), 75–89 | DOI | MR | Zbl

[32] Gurney W. S. C., Blythe S. P., Nisbet R. M., “Nicholson's blowflies revisited”, Nature, 287 (1980), 17–21 | DOI

[33] Kolmogorov K., Petrovskii I., Piskunov N., “Étude de l'équations de la diffusion avec croissance de la quantité et son application a un probleme biologique”, Bull. Univ. Moscow, Ser. Internat. Sec., 1:6 (1937), 1–25 | MR | Zbl

[34] Kopell N., Howard L. N., “Plane wave solutions to reaction-diffusion equations”, Stud. Appl. Math., 52 (1973), 291–328 | MR | Zbl

[35] Kuang Y., Delay differential equations with applications in population dynamics, Mathematics in science and engineering, 191, Academic Press, New York, 1993 | MR | Zbl

[36] Levin S. A., “Dispersion and population interactions”, Amer. Natur., 108 (1974), 207–228 | DOI

[37] Levin S. A., “Spatial patterning and the structure of ecological communities”, Some mathematical questions in biology, VII, 8, Am. Math. Soc., Providence, RI, 1976, 1–36 | MR

[38] Levin S. A., “Population models and community structure in heterogeneous environments”, Mathematical ecology, eds. Hallam T. G., Levin S. A., Springer-Verlag, New York, 1986, 295–321 | MR

[39] Liang D., Wu J. H., Traveling waves and numerical approximations in a reaction advection diffusion equation with nonlocal delayed effects, Preprint, 2002 | MR

[40] Ma S., Wu J. H., Existence, uniqueness and asymptotic stability of traveling wavefronts in a non-local delayed diffusion equation, Preprint, 2002 | MR

[41] MacDonald N., Time lags in biological models, Lect. Notes Biomath., 27, 1978 | MR | Zbl

[42] Mallet-Paret J., “The Fredholm alternative for functional differential equations of mixed type”, J. Dyn. Differ. Equations, 11 (1999), 1–47 | DOI | MR | Zbl

[43] Matano H., “Existence of nontrivial unstable sets for equilibriums of strongly order preserving systems”, J. Fac. Sci., Tokyo Univ., 30 (1984), 645–673 | MR | Zbl

[44] Martin R. H., Smith H., “Abstract functional differential equations and reaction-diffusion systems”, Trans. Am. Math. Soc., 321 (1990), 1–44 | DOI | MR | Zbl

[45] May R. M., Stability and complexity in model ecosystems, Princeton University Press, Princeton, 1975

[46] Mei M., So J. W.-H., Li M., Shen S., Stability of traveling waves for the Nicholson's blowflies equation with diffusion, Preprint, 2002

[47] Memory M. C., “Bifurcation and asymptotic behaviour of solutions of a delay-differential equation with diffusion”, SIAM J. Math. Anal., 20 (1989), 533–546 | DOI | MR | Zbl

[48] Metz J. A. J., Diekmann O., The dynamics of physiologically structured populations, Springer-Verlag, New York, 1986 | MR

[49] Mischaikow K., Smith H., Thieme H. R., “Asymptotically autonomous semiflows: chain recurrence and Lyapunov functions”, Trans. Am. Math. Soc., 347 (1995), 1669–1685 | DOI | MR | Zbl

[50] Murray J. D., Mathematical biology, Springer, Berlin–Heidelberg–New York, 1993 | MR

[51] Nicholson A. J., “The self adjustment of populations to change”, Cold Spring Harb. Symp. Quant. Biol., 22 (1957), 153–173

[52] Okubo A., “Dynamical aspects of animal grouping: swarms, schools, flocks and herds”, Adv. Biophys., 22 (1986), 1–94 | DOI

[53] Pielou E. C., Introduction to mathematical ecology, Wiley, New York, 1969 | MR | Zbl

[54] Polacik P., “Existence of unstable sets for invariant sets in compact semiflows, applications in orderpreserving semiflows”, Commentat. Math. Univ. Carolin., 31 (1990), 263–276 | MR | Zbl

[55] Redlinger R., “Existence theorems for semilinear parabolic systems with functionals”, Nonlinear Anal., 8 (1984), 667–682 | DOI | MR | Zbl

[56] Ricker W., “Stock and recruitment”, J. Fish. Res. Board Canada, 211 (1954), 559–663 | DOI

[57] Schaaf K., “Asymptotic behavior and traveling wave solutions for parabolic functional differential equations”, Trans. Am. Math. Soc., 302 (1987), 587–615 | DOI | MR | Zbl

[58] Shigesada N., “Spatial distribution of dispersing animals”, J. Math. Biol., 9 (1980), 85–96 | DOI | MR | Zbl

[59] Smith F. E., “Population dynamics in Daphnia magna”, Ecology, 44 (1963), 651–663 | DOI

[60] Smith H., “Invariant curves for mappings”, SIAM J. Math. Anal., 17 (1986), 1053–1067 | DOI | MR | Zbl

[61] Smith H., Monotone dynamical systems, an introduction to the theory of competitive and cooperative system, Math. Surv. Monogr., 11, 1995 | MR

[62] Smith H., Thieme H., “Monotone semiflows in scalar non-quasi-monotone functional differential equations”, J. Math. Anal. Appl., 21 (1990), 673–692 | MR | Zbl

[63] Smith H., Thieme H., “Strongly order preserving semiflows generated by functional differential equations”, J. Differ. Equations, 93 (1991), 332–363 | DOI | MR | Zbl

[64] So J. W. H., Wu J. H., Zou X. F., “A reaction-diffusion model for a single species with age structure I: Traveling wavefronts on unbounded domains”, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci., 457 (2001), 1841–1853 | DOI | MR | Zbl

[65] So J. W. H., Wu J. H., Zou X. F., “Structured population on two patches: modeling dispersal and delay”, J. Math. Biol., 43 (2001), 37–51 | DOI | MR | Zbl

[66] So J. W. H., Wu J. H., Yang Y., “Numerical Hopf bifurcation analysis on the diffusive Nicholson's blowflies equation”, Appl. Math. Comput., 111 (2000), 53–69 | DOI | MR

[67] So J. W. H., Yang Y., “Dirichlet problem for the diffusive Nicholson's blowflies equation”, J. Differ. Equations, 150 (1998), 317–348 | DOI | MR | Zbl

[68] So J., Zou X., “Traveling waves for the diffusive Nicholson's blowflies equation”, Appl. Math. Comput., 122 (2001), 385–392 | DOI | MR | Zbl

[69] Thieme H. R., “Asymptotic estimates of the solutions of nonlinear integral equations and asymptotic speeds for the spread of populations”, J. Reine Angew. Math., 306 (1979), 94–121 | DOI | MR | Zbl

[70] Thieme H. R., Zhao X. Q., “A nonlocal delayed and diffusive predator-prey model”, Nonlinear Anal., Real World Applications, 2 (2001), 145–160 | DOI | MR | Zbl

[71] Weinberger H. F., Asymptotic behaviors of a model in population genetics, Lect. Notes Math., 648, 1978 | MR | Zbl

[72] Weng P. X., Huang H. X., Wu J. H., Asymptotic speed of propagation of wave fronts in a lattice delay differential equation with global interaction, Preprint, 2002 | MR

[73] Wu J. H., “Theory and applications of partial functional differential equations”, Appl. Math. Sci., 119 (1996) | MR

[74] Wu J. H., Introduction to neural dynamics and signal transmission delay, De Gruyter series in nonlinear analysis and applications, de Gruyter, Berlin, 2002 | MR

[75] Wu J. H., Freedman H., Miller R., “Heteroclinic orbits and convergence of order-preserving set-condensing semiflows with applications to integrodifferential equations”, J. Integral Equations Appl., 7 (1995), 115–133 | DOI | MR | Zbl

[76] Wu J. H., Zou X. F., “Traveling wave fronts of reaction-diffusion systems with delay”, J. Dyn. Differ. Equations, 13 (2001), 651–687 | DOI | MR | Zbl

[77] Yoshida K., “The Hopf bifurcation and its stability for semilinear diffusion equations with time delay arising in ecology”, Hiroshima Math. J., 12 (1982), 321–348 | MR | Zbl

[78] Zhao X. Q., Wu J. H., Diffusive monotonicity and threshold dynamics of delayed reaction diffusion equations

[79] Zou X. F., Wu J. H., “Existence of traveling wave fronts in delay reaction-diffusion system via monotone iteration method”, Proc. Am. Math. Soc., 125 (1997), 2589–2598 | DOI | MR | Zbl