Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2003_1_a5, author = {S. A. Gourley and J. W.-H. So and Wu Jian Hong}, title = {Nonlocality of {Reaction-Diffusion} {Equations} {Induced} by {Delay:} {Biological} {Modeling} and {Nonlinear} {Dynamics}}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {84--120}, publisher = {mathdoc}, volume = {1}, year = {2003}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/CMFD_2003_1_a5/} }
TY - JOUR AU - S. A. Gourley AU - J. W.-H. So AU - Wu Jian Hong TI - Nonlocality of Reaction-Diffusion Equations Induced by Delay: Biological Modeling and Nonlinear Dynamics JO - Contemporary Mathematics. Fundamental Directions PY - 2003 SP - 84 EP - 120 VL - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/CMFD_2003_1_a5/ LA - ru ID - CMFD_2003_1_a5 ER -
%0 Journal Article %A S. A. Gourley %A J. W.-H. So %A Wu Jian Hong %T Nonlocality of Reaction-Diffusion Equations Induced by Delay: Biological Modeling and Nonlinear Dynamics %J Contemporary Mathematics. Fundamental Directions %D 2003 %P 84-120 %V 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/CMFD_2003_1_a5/ %G ru %F CMFD_2003_1_a5
S. A. Gourley; J. W.-H. So; Wu Jian Hong. Nonlocality of Reaction-Diffusion Equations Induced by Delay: Biological Modeling and Nonlinear Dynamics. Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Differential and Functional-Differential Equations — Satellite of International Congress of Mathematicians ICM-2002 (Moscow, MAI, 11–17 August, 2002). Part 1, Tome 1 (2003), pp. 84-120. https://geodesic-test.mathdoc.fr/item/CMFD_2003_1_a5/
[1] Aiello W. G., Freedman H. I., “A time-delay model of single species growth with stage structure”, Math. Biosci., 101 (1990), 139–153 | DOI | MR | Zbl
[2] Aikman D., Hewitt G., “An experimental investigation of the rate and form of dispersal in grasshoppers”, J. Appl. Ecol., 9 (1972), 807–817 | DOI
[3] Aronson D. G., “The asymptotic speed of a propagation of a simple epidemic”, Res. Notes Math., 14 (1977), 1–23 | MR
[4] Aronson D. G., Weinberger H. F., “Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation”, Lect. Notes Math., 446 (1975), 5–49 | DOI | MR | Zbl
[5] Aronson D. G., Weinberger H. F., “Multidimensional nonlinear diffusion arising in population genetics”, Adv. Math., 30 (1978), 33–76 | DOI | MR | Zbl
[6] Ashwin P. B., Bartuccelli M. V., Bridges T. J., Gourley S. A., “Travelling fronts for the KPP equation with spatio-temporal delay”, Z. Angew. Math. Phys., 53 (2002), 103–122 | DOI | MR | Zbl
[7] Britton N. F., Reaction-diffusion equations and their applications to biology, Academic Press, New York, 1986 | MR | Zbl
[8] Britton N. F., “Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model”, SIAM J. Appl. Math., 50 (1990), 1663–1688 | DOI | MR | Zbl
[9] Chow S. N., Lin X. B., Mallet-Paret J., “Transition layers for singularly perturbed delay differential equations with monotone nonlinearities”, J. Dyn. Differ. Equations, 1 (1989), 3–43 | DOI | MR | Zbl
[10] Crandall M. G., Rabinowitz P. H., “Mathematical theory of bifurcation”, Bifurcation phenomena in mathematical physics and related topics, eds. Bardos C., Bessis D., Reidel D., Dordrecht, 1980, 3–46 | MR | Zbl
[11] Cushing J. M., Integrodifferential equations and delay models in population dynamics, Springer-Verlag, Heidelberg, 1977 | MR
[12] Dance N., Hess P., “Stability of fixed points for order-preserving discrete-time dynamical systems”, J. Reine Angew. Math., 419 (1991), 125–139 | MR | Zbl
[13] Diekmann O., “Thresholds and traveling waves for the geographical spread of infection”, J. Math. Biol., 69 (1978), 109–130 | DOI | MR
[14] Diekmann O., “Run for your life, a note on the asymptotic speed of propagation of an epidemic”, J. Differ. Equations, 33 (1979), 58–73 | DOI | MR | Zbl
[15] Faria T., Huang W., Wu J. H., Traveling wave solutions for time delayed reaction-diffusion equations with non-local response, Preprint, 2002 | MR
[16] Fort J., Méndez V., “Wavefronts in time-delayed reaction-diffusion systems. Theory and comparison to experiment”, Rep. Progr. Phys., 65 (2002), 895–954 | DOI
[17] Huang H., Longeway J., Vieira T., Wu J. H., Aggregation and heterogeneity from the nonlinear dynamic interaction of birth, maturation and spatial migration, Nonlinear Anal., Real World Applications, 2002 | MR
[18] Fisher R. A., “The advance of advantageous genes”, Ann. Eugenics, 7 (1937), 355–369 | DOI | Zbl
[19] Furter J., Grinfeld M., “Local vs. nonlocal interactions in population dynamics”, J. Math. Biol., 27 (1989), 65–80 | MR | Zbl
[20] Gander M., Mei M., Schmidt G., So J. W.-H., Stability of traveling waves for a nonlocal time-delayed reaction-diffusion equation, Preprint, 2002
[21] Glass L., Mackey M. C., “Oscillations and chaos in physiological control systems”, Science, 197 (1977), 287–289 | DOI
[22] Glass L., Mackey M. C., “Pathological conditions resulting from instabilities in physiological control systems”, Ann. N. Y. Acad. Sci., 316 (1979), 214–235 | DOI | Zbl
[23] Gopalsamy K., Stability and oscillations in delay differential equations of population dynamics, Kluwer, Dordrecht, 1992 | MR | Zbl
[24] Gourley S. A., “Traveling front solutions of a nonlocal Fisher equation”, J. Math. Biol., 41 (2000), 272–284 | DOI | MR | Zbl
[25] Gourley S. A., Britton N. F., “Instability of travelling wave solutions of a population model with nonlocal effects”, IMA J. Appl. Math., 51 (1993), 299–310 | DOI | MR | Zbl
[26] Gourley S. A., Britton N. F., “A predator prey reaction diffusion system with nonlocal effects”, J. Math. Biol., 34 (1996), 297–333 | MR | Zbl
[27] Gourley S. A., Bartuccelli M. V., “Parameter domains for instability of uniform states in systems with many delays”, J. Math. Biol., 35 (1997), 843–867 | DOI | MR | Zbl
[28] Gourley S. A., Kuang Y., “Wavefronts and global stability in a time-delayed population model with stage structure”, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci., 2002 | MR
[29] Gourley S. A., Ruan S., “Dynamics of the diffusive Nicholson's blowflies equation with distributed delays”, Proc. R. Soc. Edinb., Sect. A., Math., 130 (2000), 1275–1291 | DOI | MR | Zbl
[30] Gourley S. A., So J. W. H., “Dynamics of a food-limited population model incorporating nonlocal delays on a finite domain”, J. Math. Biol., 44 (2002), 49–78 | DOI | MR | Zbl
[31] Gourley S. A., Chaplain M. A. J., “Travelling fronts in a food-limited population model with time delay”, Proc. R. Soc. Edinb., Sect. A., Math., 132 (2002), 75–89 | DOI | MR | Zbl
[32] Gurney W. S. C., Blythe S. P., Nisbet R. M., “Nicholson's blowflies revisited”, Nature, 287 (1980), 17–21 | DOI
[33] Kolmogorov K., Petrovskii I., Piskunov N., “Étude de l'équations de la diffusion avec croissance de la quantité et son application a un probleme biologique”, Bull. Univ. Moscow, Ser. Internat. Sec., 1:6 (1937), 1–25 | MR | Zbl
[34] Kopell N., Howard L. N., “Plane wave solutions to reaction-diffusion equations”, Stud. Appl. Math., 52 (1973), 291–328 | MR | Zbl
[35] Kuang Y., Delay differential equations with applications in population dynamics, Mathematics in science and engineering, 191, Academic Press, New York, 1993 | MR | Zbl
[36] Levin S. A., “Dispersion and population interactions”, Amer. Natur., 108 (1974), 207–228 | DOI
[37] Levin S. A., “Spatial patterning and the structure of ecological communities”, Some mathematical questions in biology, VII, 8, Am. Math. Soc., Providence, RI, 1976, 1–36 | MR
[38] Levin S. A., “Population models and community structure in heterogeneous environments”, Mathematical ecology, eds. Hallam T. G., Levin S. A., Springer-Verlag, New York, 1986, 295–321 | MR
[39] Liang D., Wu J. H., Traveling waves and numerical approximations in a reaction advection diffusion equation with nonlocal delayed effects, Preprint, 2002 | MR
[40] Ma S., Wu J. H., Existence, uniqueness and asymptotic stability of traveling wavefronts in a non-local delayed diffusion equation, Preprint, 2002 | MR
[41] MacDonald N., Time lags in biological models, Lect. Notes Biomath., 27, 1978 | MR | Zbl
[42] Mallet-Paret J., “The Fredholm alternative for functional differential equations of mixed type”, J. Dyn. Differ. Equations, 11 (1999), 1–47 | DOI | MR | Zbl
[43] Matano H., “Existence of nontrivial unstable sets for equilibriums of strongly order preserving systems”, J. Fac. Sci., Tokyo Univ., 30 (1984), 645–673 | MR | Zbl
[44] Martin R. H., Smith H., “Abstract functional differential equations and reaction-diffusion systems”, Trans. Am. Math. Soc., 321 (1990), 1–44 | DOI | MR | Zbl
[45] May R. M., Stability and complexity in model ecosystems, Princeton University Press, Princeton, 1975
[46] Mei M., So J. W.-H., Li M., Shen S., Stability of traveling waves for the Nicholson's blowflies equation with diffusion, Preprint, 2002
[47] Memory M. C., “Bifurcation and asymptotic behaviour of solutions of a delay-differential equation with diffusion”, SIAM J. Math. Anal., 20 (1989), 533–546 | DOI | MR | Zbl
[48] Metz J. A. J., Diekmann O., The dynamics of physiologically structured populations, Springer-Verlag, New York, 1986 | MR
[49] Mischaikow K., Smith H., Thieme H. R., “Asymptotically autonomous semiflows: chain recurrence and Lyapunov functions”, Trans. Am. Math. Soc., 347 (1995), 1669–1685 | DOI | MR | Zbl
[50] Murray J. D., Mathematical biology, Springer, Berlin–Heidelberg–New York, 1993 | MR
[51] Nicholson A. J., “The self adjustment of populations to change”, Cold Spring Harb. Symp. Quant. Biol., 22 (1957), 153–173
[52] Okubo A., “Dynamical aspects of animal grouping: swarms, schools, flocks and herds”, Adv. Biophys., 22 (1986), 1–94 | DOI
[53] Pielou E. C., Introduction to mathematical ecology, Wiley, New York, 1969 | MR | Zbl
[54] Polacik P., “Existence of unstable sets for invariant sets in compact semiflows, applications in orderpreserving semiflows”, Commentat. Math. Univ. Carolin., 31 (1990), 263–276 | MR | Zbl
[55] Redlinger R., “Existence theorems for semilinear parabolic systems with functionals”, Nonlinear Anal., 8 (1984), 667–682 | DOI | MR | Zbl
[56] Ricker W., “Stock and recruitment”, J. Fish. Res. Board Canada, 211 (1954), 559–663 | DOI
[57] Schaaf K., “Asymptotic behavior and traveling wave solutions for parabolic functional differential equations”, Trans. Am. Math. Soc., 302 (1987), 587–615 | DOI | MR | Zbl
[58] Shigesada N., “Spatial distribution of dispersing animals”, J. Math. Biol., 9 (1980), 85–96 | DOI | MR | Zbl
[59] Smith F. E., “Population dynamics in Daphnia magna”, Ecology, 44 (1963), 651–663 | DOI
[60] Smith H., “Invariant curves for mappings”, SIAM J. Math. Anal., 17 (1986), 1053–1067 | DOI | MR | Zbl
[61] Smith H., Monotone dynamical systems, an introduction to the theory of competitive and cooperative system, Math. Surv. Monogr., 11, 1995 | MR
[62] Smith H., Thieme H., “Monotone semiflows in scalar non-quasi-monotone functional differential equations”, J. Math. Anal. Appl., 21 (1990), 673–692 | MR | Zbl
[63] Smith H., Thieme H., “Strongly order preserving semiflows generated by functional differential equations”, J. Differ. Equations, 93 (1991), 332–363 | DOI | MR | Zbl
[64] So J. W. H., Wu J. H., Zou X. F., “A reaction-diffusion model for a single species with age structure I: Traveling wavefronts on unbounded domains”, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci., 457 (2001), 1841–1853 | DOI | MR | Zbl
[65] So J. W. H., Wu J. H., Zou X. F., “Structured population on two patches: modeling dispersal and delay”, J. Math. Biol., 43 (2001), 37–51 | DOI | MR | Zbl
[66] So J. W. H., Wu J. H., Yang Y., “Numerical Hopf bifurcation analysis on the diffusive Nicholson's blowflies equation”, Appl. Math. Comput., 111 (2000), 53–69 | DOI | MR
[67] So J. W. H., Yang Y., “Dirichlet problem for the diffusive Nicholson's blowflies equation”, J. Differ. Equations, 150 (1998), 317–348 | DOI | MR | Zbl
[68] So J., Zou X., “Traveling waves for the diffusive Nicholson's blowflies equation”, Appl. Math. Comput., 122 (2001), 385–392 | DOI | MR | Zbl
[69] Thieme H. R., “Asymptotic estimates of the solutions of nonlinear integral equations and asymptotic speeds for the spread of populations”, J. Reine Angew. Math., 306 (1979), 94–121 | DOI | MR | Zbl
[70] Thieme H. R., Zhao X. Q., “A nonlocal delayed and diffusive predator-prey model”, Nonlinear Anal., Real World Applications, 2 (2001), 145–160 | DOI | MR | Zbl
[71] Weinberger H. F., Asymptotic behaviors of a model in population genetics, Lect. Notes Math., 648, 1978 | MR | Zbl
[72] Weng P. X., Huang H. X., Wu J. H., Asymptotic speed of propagation of wave fronts in a lattice delay differential equation with global interaction, Preprint, 2002 | MR
[73] Wu J. H., “Theory and applications of partial functional differential equations”, Appl. Math. Sci., 119 (1996) | MR
[74] Wu J. H., Introduction to neural dynamics and signal transmission delay, De Gruyter series in nonlinear analysis and applications, de Gruyter, Berlin, 2002 | MR
[75] Wu J. H., Freedman H., Miller R., “Heteroclinic orbits and convergence of order-preserving set-condensing semiflows with applications to integrodifferential equations”, J. Integral Equations Appl., 7 (1995), 115–133 | DOI | MR | Zbl
[76] Wu J. H., Zou X. F., “Traveling wave fronts of reaction-diffusion systems with delay”, J. Dyn. Differ. Equations, 13 (2001), 651–687 | DOI | MR | Zbl
[77] Yoshida K., “The Hopf bifurcation and its stability for semilinear diffusion equations with time delay arising in ecology”, Hiroshima Math. J., 12 (1982), 321–348 | MR | Zbl
[78] Zhao X. Q., Wu J. H., Diffusive monotonicity and threshold dynamics of delayed reaction diffusion equations
[79] Zou X. F., Wu J. H., “Existence of traveling wave fronts in delay reaction-diffusion system via monotone iteration method”, Proc. Am. Math. Soc., 125 (1997), 2589–2598 | DOI | MR | Zbl