Some Aspects of the Boundary Trace Problem for Solutions of Nonlinear Elliptic Equations
Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Differential and Functional-Differential Equations — Satellite of International Congress of Mathematicians ICM-2002 (Moscow, MAI, 11–17 August, 2002). Part 1, Tome 1 (2003), pp. 56-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

The boundary trace problem for positive solutions of Δu+g(x,u)=0 is considered for a large class of nonlinearities and three different methods for defining the trace are compared. The boundary trace is usually a generalized Borel measure. The associated Dirichlet problem with boundary data in the set of such Borel measures is studied.
@article{CMFD_2003_1_a4,
     author = {L. V\'eron},
     title = {Some {Aspects} of the {Boundary} {Trace} {Problem} for {Solutions} of {Nonlinear} {Elliptic} {Equations}},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {56--68},
     publisher = {mathdoc},
     volume = {1},
     year = {2003},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/CMFD_2003_1_a4/}
}
TY  - JOUR
AU  - L. Véron
TI  - Some Aspects of the Boundary Trace Problem for Solutions of Nonlinear Elliptic Equations
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2003
SP  - 56
EP  - 68
VL  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/CMFD_2003_1_a4/
LA  - ru
ID  - CMFD_2003_1_a4
ER  - 
%0 Journal Article
%A L. Véron
%T Some Aspects of the Boundary Trace Problem for Solutions of Nonlinear Elliptic Equations
%J Contemporary Mathematics. Fundamental Directions
%D 2003
%P 56-68
%V 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/CMFD_2003_1_a4/
%G ru
%F CMFD_2003_1_a4
L. Véron. Some Aspects of the Boundary Trace Problem for Solutions of Nonlinear Elliptic Equations. Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Differential and Functional-Differential Equations — Satellite of International Congress of Mathematicians ICM-2002 (Moscow, MAI, 11–17 August, 2002). Part 1, Tome 1 (2003), pp. 56-68. https://geodesic-test.mathdoc.fr/item/CMFD_2003_1_a4/

[1] Bandle C., Marcus M., “Asymptotic behavior of solutions and their derivative for semilinear elliptic problems with blow-up on the boundary”, Ann. Inst. Henri Poincaré, 12 (1995), 155–171 | MR | Zbl

[2] Bandle C., Marcus M., “Large solutions of semilinear elliptic equations: existence, uniqueness and asymptotic behavior”, J. Anal. Math., 58 (1992), 9–24 | DOI | MR | Zbl

[3] Baras P., Pierre M., “Singularités éliminables pour des équations semi-lin-eaires”, Ann. Inst. Fourier, 34 (1984), 185–206 | MR | Zbl

[4] Baras P., Goldstein J., “The heat equation with a singular potential”, Trans. Am. Math. Soc., 284 (1984), 121–139 | DOI | MR | Zbl

[5] Benilan Ph., Brezis H., Nonlinear problems related to the Thomas–Fermi equation, Unpublished paper, see [8]

[6] Bidaut-Véron M. F., Vivier L., “An elliptic semilinear equation with source term involving boundary measures: the subcritical case”, Rev. Mat. Iberoam., 16 (2000), 477–513 | MR | Zbl

[7] Brezis H., Une équation semi-linéaire avec conditions aux limites dans $L^1$, Unpublished paper, see also [38, Chap. 4] | Zbl

[8] Brezis H., “Some variational problems of the Thomas–Fermi type”, Variational inequalities, eds. Cottle R. W., Gianessi F., Lions J.-L., Wiley, Chichester, 1980, 53–73 | MR

[9] Cabre X., “Extremal solutions and instantaneous complete blow-up for elliptic and parabolic problems” (to appear)

[10] Dautray R., Lions J.-L., Analyse mathématique et calcul numérique, Masson, Paris, 1987 | MR

[11] Doob J., Classical potential theory and its probabilistic counterpart, Springer-Verlag, Berlin–New York, 1984 | MR | Zbl

[12] Du Y., Guo Z., “The degenerate logistic model and a singularly mixed boundary blow-up problem” (to appear) | MR

[13] Dynkin E. B., Kuznetsov S. E., “Trace on the boundary for solutions of nonlinear differential equations”, Trans. Am. Math. Soc., 350 (1998), 4499–4519 | DOI | MR | Zbl

[14] Dynkin E. B., Kuznetsov S. E., “Solutions of nonlinear differential equtions on a Riemannian manifold and their trace on the Martin boundary”, Trans. Am. Math. Soc., 350 (1998), 4521–4552 | DOI | MR | Zbl

[15] Dynkin E. B., Kuznetsov S. E., “Fine topology and fine trace on the boundary associated with a class of quasilinear differential equations”, Commun. Pure Appl. Math., 5:1 (1998), 897–936 | 3.0.CO;2-0 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR

[16] Fabbri J., Licois J. R., “Behavior at boundary of solutions of a weakly superlinear elliptic equation”, Adv. Nonlinear Studies, 2 (2002), 147–176 | MR | Zbl

[17] Gilbarg D., Trudinger N. S., Partial differential equations of second order, 2nd ed., Springer-Verlag, Berlin–New York, 1983 | MR | Zbl

[18] Gmira A., Véron L., “Boundary singularities of solutions of some nonlinear elliptic equations”, Duke Math. J., 64 (1991), 271–324 | DOI | MR | Zbl

[19] Grillot M., Véron L., “Boundary trace of solutions of the Prescribed Gaussian curvature equation”, Proc. R. Soc. Edinb., Sect. A, Math., 130 (2000), 1–34 | DOI | MR

[20] Iscoe I., “On the support of measure-valued critical branching Brownian motion”, Ann. Probab., 16 (1988), 200–221 | DOI | MR | Zbl

[21] Keller J. B., “On solutions of $\Delta u=f(u)$”, Commun. Pure Appl. Math., 10 (1957), 503–510 | DOI | MR | Zbl

[22] Le Gall J. F., “Les solutions positives de $\Delta u=u^2$ dans le disque unité”, C. R. Acad. Sci., Paris, Sér. I, Math., 317 (1993), 873–878 | MR | Zbl

[23] Le Gall J. F., “The brownian snake and solutions of $\Delta u=u^2$ in a domain”, Probab. Theory Relat. Fields, 102 (1995), 393–432 | DOI | MR | Zbl

[24] Marcus M., Véron L., “Uniqueness and asymptotic behaviour of solutions with boundary blow-up for a class of nonlinear elliptic equations”, Ann. Inst. Henri Poincaré, 14 (1997), 237–274 | DOI | MR | Zbl

[25] Marcus M., Véron L., “Traces au bord des solutions positives d'équations elliptiques non-linéaires”, C. R. Acad. Sci., Paris, Sér. I, Math., 321 (1995), 179–184 | MR | Zbl

[26] Marcus M., Véron L., “Traces au bord des solutions positives d'équations elliptiques et paraboliques non-linéaires: résultats d'existence et d'unicité”, C. R. Acad. Sci., Paris, Sér. I, Math., 323 (1996), 603–608 | MR | Zbl

[27] Marcus M., Véron L., “The boundary trace of positive solutions of semilinear elliptic equations: the subcritical case”, Arch. Ration. Mech. Anal., 144 (1998), 201–231 | DOI | MR | Zbl

[28] Marcus M., Véron L., “The boundary trace of positive solutions of semilinear elliptic equations: the supercritical case”, J. Math. Pures Appl., IX. Sér., 77 (1998), 481–524 | DOI | MR | Zbl

[29] Marcus M., Véron L., “Removable singularities and boundary traces”, J. Math. Pures Appl., IX. Sé_r., 80 (2001), 879–900 | DOI | MR | Zbl

[30] Marcus M., Véron L., “The boundary trace and generalized B.V.P. for semilinear elliptic equations with a strong absorption”, Commun. Pure Appl. Math. (to appear)

[31] Marcus M., Véron L., “Boundary trace of positive solutions of nonlinear elliptic inequalities” (to appear)

[32] Marcus M., Véron L., “Initial trace of positive solutions to semilinear parabolic inequalities”, Adv. Nonlinear Studies, 2 (2002), 395–436 | MR | Zbl

[33] Mselati B., Classification et représentation probabilistes des solutions positives de $\Delta u-u^2$ dans un domaine, PhD Thesis, Université Paris 6, 2002

[34] Osserman R., “On the inequality $\Delta u\geqslant f(u)$”, Pac. J. Math., 7 (1957), 1641–1647 | MR | Zbl

[35] Ratto A., Rigoli M., Véron L., “Scalar curvature and conformal deformation of hyperbolic space”, J. Funct. Anal., 121 (1994), 15–77 | DOI | MR | Zbl

[36] Richard Y., Véron L., “Isotropic singularities of nonlinear elliptic inequalities”, Ann. Inst. Henri Poincaré, 6 (1989), 37–72 | MR | Zbl

[37] Vazquez J. L., “An a priori interior estimate for the solution of a nonlinear problem representing weak diffusion”, Nonlinear Anal., Theory Methods Appl., 5 (1981), 119–135 | MR

[38] Véron L., Singularities of solutions of second order quasilinear equations, Pitman Research Notes Math., 353, 1996 | MR | Zbl

[39] Véron L., “Semilinear elliptic equations with uniform blow-up on the boundary”, J. Anal. Math., 59 (1992), 231–250 | DOI | MR | Zbl