Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2021_6_3_a10, author = {M. O. Usik and O. G. Kharitonova and D. A. Kuzmin and I. V. Bychkov and V. A. Tolkachev and V. G. Shavrov and V. V. Temnov}, title = {Excitation of surface plasmon-polaritons in hybrid graphene metasurface~--- vanadium dioxide nanostructure using prism coupling}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {375--383}, publisher = {mathdoc}, volume = {6}, number = {3}, year = {2021}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/CHFMJ_2021_6_3_a10/} }
TY - JOUR AU - M. O. Usik AU - O. G. Kharitonova AU - D. A. Kuzmin AU - I. V. Bychkov AU - V. A. Tolkachev AU - V. G. Shavrov AU - V. V. Temnov TI - Excitation of surface plasmon-polaritons in hybrid graphene metasurface~--- vanadium dioxide nanostructure using prism coupling JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2021 SP - 375 EP - 383 VL - 6 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/CHFMJ_2021_6_3_a10/ LA - en ID - CHFMJ_2021_6_3_a10 ER -
%0 Journal Article %A M. O. Usik %A O. G. Kharitonova %A D. A. Kuzmin %A I. V. Bychkov %A V. A. Tolkachev %A V. G. Shavrov %A V. V. Temnov %T Excitation of surface plasmon-polaritons in hybrid graphene metasurface~--- vanadium dioxide nanostructure using prism coupling %J Čelâbinskij fiziko-matematičeskij žurnal %D 2021 %P 375-383 %V 6 %N 3 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/CHFMJ_2021_6_3_a10/ %G en %F CHFMJ_2021_6_3_a10
M. O. Usik; O. G. Kharitonova; D. A. Kuzmin; I. V. Bychkov; V. A. Tolkachev; V. G. Shavrov; V. V. Temnov. Excitation of surface plasmon-polaritons in hybrid graphene metasurface~--- vanadium dioxide nanostructure using prism coupling. Čelâbinskij fiziko-matematičeskij žurnal, Tome 6 (2021) no. 3, pp. 375-383. https://geodesic-test.mathdoc.fr/item/CHFMJ_2021_6_3_a10/
[1] Othman M.A.K., Guclu C., Capolino F., “Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption”, Optics Express, 21 (2013), 7614 | DOI
[2] Gomez-Diaz J.S., Tymchenko M., Alu A., “Hyperbolic plasmons and topological transitions over uniaxial metasurfaces”, Physical Review Letters, 114 (2015), 233901 | DOI
[3] Gomez-Diaz J.S., Alu A., “Flatland optics with hyperbolic metasurfaces”, ACS Photonics, 3 (2016), 2211 | DOI
[4] Melo L.G.C., “Theory of magnetically controlled low-terahertz surface plasmon-polariton modes in graphene–dielectric structures”, Journal of the Optical Society of America B, 32 (2015), 2467 | DOI
[5] Usik M.O., Bychkov I.V., Shavrov V.G., Kuzmin D.A., “Surface plasmon-polaritons in deformed graphene excited by attenuated total internal reflection”, Open Material Science, 5 (2019), 7 | DOI
[6] Lu H., Zhao J., Gu M., “Nanowires-assisted excitation and propagation of mid-infrared surface plasmon polaritons in graphene”, Journal of Applied Physics, 120 (2016), 163106 | DOI
[7] Lu H., Mao D., Zeng Ch., Xiao F., Yang D., Mei T., Zhao J., “Plasmonic Fano spectral response from graphene metasurfaces in the MIR region”, Optical Materials Express, 8 (2016), 1058
[8] Menabde S.G., Mason D.R., Kornev E.E., Lee Ch., Parket N., “Direct optical probing of transverse electric mode in graphene”, Scientific Reports, 6 (2016), 21523 | DOI
[9] Otto A., “Excitation of Nonradiative Surface Plasma Waves in Silver by the Method of Frustrated Total Reflection”, Zeitschrift für Physik, 216 (1968), 398 | DOI
[10] LeBlanc S.J., McClanahan M.R., Jones M., Moyer P.J., “Enhancement of multiphoton emission from single CdSe quantum dots coupled to gold films”, Nano Letters, 13 (2013), 1662 | DOI
[11] Razdolski I., Makarov D., Schmidt O.G., Kirilyuk A., Theo Rasing T., Temnov V.V., “Nonlinear surface magnetoplasmonics in Kretschmann multilayers”, ACS Photonics, 3 (2016), 179 | DOI
[12] Kuzmin D.A., Bychkov I.V. and Shavrov V.G., “Magnetic Field Control of Plasmon Polaritons in Graphene-Covered Gyrotropic Planar Waveguide”, Optics Letters, 40 (2015), 2557 | DOI
[13] Kuzmin D.A., Bychkov I.V., Shavrov V.G., Temnov V.V., “Giant Faraday rotation of high-order plasmonic modes in graphenecovered nanowires”, Nano Letters, 16 (2016), 4391 | DOI
[14] Falkovsky L.A., “Optical properties of graphene and IV-VI semiconductors”, Physics-Uspekhi, 51 (2008), 887–89 | DOI
[15] Rini M., Cavalleri A., Schoenlein R.W., López R., Feldman L.C., Haglund L.A., Boatner R.F., Haynes T.E., “Photoinduced phase transition in VO$_2$ nanocrystals: ultrafast control of surface-plasmon resonance”, Optics Letters, 30 (2005), 558 | DOI
[16] Chen C., Wang R., Shang L., Guo C., “Gate-field-induced phase transitions in VO$_2$: Monoclinic metal phase separation and switchable infrared reflections.”, Applied Physics Letters, 93 (2008), 171101 | DOI
[17] Lysenko S., Vikhnin V., Rua A., Fernandez F., Liu H., “Critical behavior and size effects in light-induced transition of nanostructured VO$_2$ films”, Physical Review B, 82 (2010), 205425 | DOI
[18] Shao Z., Cao X., Luo H., Jin P., “Recent progress in the phase-transition mechanism and modulation of vanadium dioxide materials”, NPG Asia Materials, 10 (2018), 581 | DOI
[19] Peterseim T., Dressel M., Dietrich M., Polity A., “Optical properties of VO2 films at the phase transition: Influence of substrate and electronic correlations”, Journal of Applied Physics, 120 (2016), 075102 | DOI
[20] Thomas M., Chain E.E., “ptical properties and electron energy-loss diagnostics of vanadium dioxide thin films”, Thin Solid Films, 204 (1991), L1 | DOI
[21] Tazawa M., Jin P., Tanemura S., “Optical constants of V$_{1-x}$W$_x$O$_2$ films”, Applied Optics, 37 (1998), 1858 | DOI