Molecular-dynamic simulation of shock-wave compacting of aluminum nanopowder
Čelâbinskij fiziko-matematičeskij žurnal, Tome 3 (2018) no. 4, pp. 453-460.

Voir la notice de l'article provenant de la source Math-Net.Ru

A molecular-dynamic modeling of the compacting of a monodisperse aluminum nanopowder with a diameter of nanoparticles of 6–24 nm under the impact of shock compression pulses with an amplitude of 1 to 15 GPa and a duration of 30 to 100 ps was carried out. A layer of nanopowder 120 nm thick was placed between two aluminum walls with a thickness of 122 nm each, the walls simulated the container. A pressure pulse was applied to the outer surface of one of the walls. Depending on the amplitude of the shock compression pulse, either elastic compression of nanoparticles or their plastic deformation leading to compaction was observed. At large pulse amplitudes, the resulting rarefaction wave leads to a splitting in the thickness of the compact. The amplitude of 5 GPa is sufficient for complete compaction of nanoparticles.
Mots-clés : nanopowder, compaction, impact pulse, molecular dynamics simulation.
@article{CHFMJ_2018_3_4_a5,
     author = {M. Kh. A. Al-Sandoqachi and A. A. Ebel and A. E. Mayer},
     title = {Molecular-dynamic simulation of shock-wave compacting of aluminum nanopowder},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {453--460},
     publisher = {mathdoc},
     volume = {3},
     number = {4},
     year = {2018},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/CHFMJ_2018_3_4_a5/}
}
TY  - JOUR
AU  - M. Kh. A. Al-Sandoqachi
AU  - A. A. Ebel
AU  - A. E. Mayer
TI  - Molecular-dynamic simulation of shock-wave compacting of aluminum nanopowder
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2018
SP  - 453
EP  - 460
VL  - 3
IS  - 4
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/CHFMJ_2018_3_4_a5/
LA  - ru
ID  - CHFMJ_2018_3_4_a5
ER  - 
%0 Journal Article
%A M. Kh. A. Al-Sandoqachi
%A A. A. Ebel
%A A. E. Mayer
%T Molecular-dynamic simulation of shock-wave compacting of aluminum nanopowder
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2018
%P 453-460
%V 3
%N 4
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/CHFMJ_2018_3_4_a5/
%G ru
%F CHFMJ_2018_3_4_a5
M. Kh. A. Al-Sandoqachi; A. A. Ebel; A. E. Mayer. Molecular-dynamic simulation of shock-wave compacting of aluminum nanopowder. Čelâbinskij fiziko-matematičeskij žurnal, Tome 3 (2018) no. 4, pp. 453-460. https://geodesic-test.mathdoc.fr/item/CHFMJ_2018_3_4_a5/

[1] W. H. Gourdin, “Dynamic consolidation of metal powders”, Progress in Materials Science, 30:1 (1986), 39–80 | DOI

[2] M. A. Meyers, D. J. Benson, E. A. Olevsky, “Shock consolidation: microstructurally-based analysis and computational modeling”, Acta Materialia, 47:7 (1999), 2089–2108 | DOI

[3] G. Sh. Boltachev, N. B. Volkov, V. V. Ivanov, A. S. Kaygorodov, “Shock-wave compaction of the granular medium initiated by magnetically pulsed accelerated striker”, Acta Mechanica, 204 (2009), 37–50 | DOI | Zbl

[4] S. P. Kiselev, “Compaction of copper nanopowder”, Journal of Applied Mechanics and Technical Physics, 48:3 (2007), 412–419 | DOI | Zbl

[5] S. P. Kiselev, “Compaction of a mixture of copper and molybdenum nanopowders modeled by the molecular dynamics method”, Journal of Applied Mechanics and Technical Physics, 49:5 (2007), 712–722 | DOI

[6] L. Huang, W. Z. Han, Q. An, W. A. Goddard III, S. N. Luo, “Shock-induced consolidation and spallation of Cu nanopowders”, Journal of Applied Physics, 111:1 (2012), 013508 | DOI

[7] A. E. Mayer, A. A. Ebel, “Shock-induced compaction of nanoparticle layers into nanostructured coating”, Journal of Applied Physics, 122:16 (2017), 165901 | DOI

[8] S. Plimpton, “Fast parallel algorithms for short-range molecular dynamics”, Journal of Computational Physics, 117:1 (1995), 1–19. | DOI | MR | Zbl

[9] F. Apostol, Y. Mishin, “Interatomic potential for the Al-Cu system”, Physical Review B, 83 (2011), 054116 | DOI

[10] M. S. Daw, M. I. Baskes, “Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals”, Physical Review B, 29 (1984), 6443 | DOI

[11] A. Stukowski, “Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool”, Modelling and Simulation in Materials Science and Engineering, 18:1 (2010), 015012 | DOI

[12] C. L. Kelchner, S. J. Plimpton, J. C. Hamilton, “Dislocation nucleation and defect structure during surface indentation”, Physical Review B, 58:17 (1998), 11085 | DOI

[13] A. Stukowski, “Computational analysis methods in atomistic modeling of crystals”, Journal of the Minerals, Metals, and Materials Society, 66:3 (2014), 399–407 | DOI

[14] Mayer A.E., Al-Sandoqachi M.Kh.A., “Molecular-dynamic study of the size effect in the compacting of monodisperse aluminium nanopowder”, Chelyabinsk Physical and Mathematical Journal, 3:2 (2018), 193-201 (In Russ.)