Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2015_16_2_a15, author = {R. Shamoyan and S. Kurilenko}, title = {Traces and distances in analytic function spaces in $C^n$ and {Martinelly--Bochner} integrals}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {254--272}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2015}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/CHEB_2015_16_2_a15/} }
TY - JOUR AU - R. Shamoyan AU - S. Kurilenko TI - Traces and distances in analytic function spaces in $C^n$ and Martinelly--Bochner integrals JO - Čebyševskij sbornik PY - 2015 SP - 254 EP - 272 VL - 16 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/CHEB_2015_16_2_a15/ LA - en ID - CHEB_2015_16_2_a15 ER -
R. Shamoyan; S. Kurilenko. Traces and distances in analytic function spaces in $C^n$ and Martinelly--Bochner integrals. Čebyševskij sbornik, Tome 16 (2015) no. 2, pp. 254-272. https://geodesic-test.mathdoc.fr/item/CHEB_2015_16_2_a15/
[1] J. Ortega, J. Fabrega, “Mixed-norm spaces and interpolation”, Studia Math., 109:3 (1994), 234–254 | MR
[2] R. Shamoyan, “On some characterizations of Carleson type measure in the unit ball”, Banach J. Math. Anal., 3:2 (2009), 42–48 | DOI | MR | Zbl
[3] R. Shamoyan, O. Mihic, “On traces of holomorphic functions on the unit polyball”, Appl. Anal. Disorete Math., 3 (2009), 198–211 | DOI | MR | Zbl
[4] R. Shamoyan, O. Mihic, “On traces of $Q_p$ type spaces and mixed norm analytic function spaces on polyballs”, Siauliau. Math. Seminar, 5:13 (2010), 101 | MR | Zbl
[5] Kytmanov A., Martinelly–Bochner integral and it is applications, Nauka, Novosibirsk, 2002, 240 pp. (in Russian)
[6] Chirka E., “Analytic representation of CR functions”, Mat. Sbornik, 98(140):4(12) (1975), 591–623 | MR | Zbl
[7] R. Shamoyan, O. Mihic, “On traces of holomorphic functions on the unit polyball”, Appl. Anal. Discrete Math., 3 (2009), 198–211 | DOI | MR | Zbl
[8] M. Arsenovic, R. Shamoyan, “On embeddings, traces and multipliers in harmonic function spaces”, Kragujevac Math. Journal, 37:1 (2013), 45–64 | MR | Zbl
[9] R. Shamoyan, M. Arsenovic, “On distance estimates and atomic decompositions in spaces of analytic functions on strictly pseudoconvex domains”, Bulletin of the Korean Mathematical Society, 52:1 (2015), 85–103 | DOI | MR | Zbl
[10] R. F. Shamoyan, S. M. Kurilenko, “On a sharp estimate for a distance function in Bergman type analytic spaces in Siegel domains of second type”, Mathematica Montisnigri, XXX (2014), 5–16 | MR
[11] R. F. Shamoyan, S. M. Kurilenko, “On extremal problems in tubular domains over symmetric cones”, Issues of Analysis, 3(21):1 (2014), 44–65 | DOI | Zbl
[12] R. Shamoyan, O. Mihic, “On Traces in Some Analytic Spaces in Bounded Strictly Pseudoconvex Domains”, Journal of Function Spaces, 2015 (2015), 10 pp. | DOI | MR
[13] R. Shamoyan, S. Kurilenko, “On traces of Herz type and Bloch type spaces on pseudoconvex domains”, Issues of Analysis, 2015
[14] R. Shamoyan, O. Mihic, “On new estimates for distances in analytic function spaces in the unit disk, the polydisk and the unit ball”, Boletin de la Asociacion Matematica Venezolana, XVII:2 (2010), 89–103 | MR | Zbl
[15] R. Shamoyan, O. Mihic, “On new estimates for distances in analytic function spaces in unit disk, polydisk, and unit ball”, Siberian Mathematical Reports, 6 (2009), 514–517 | MR | Zbl
[16] R. Shamoyan, E. Povprits, “Sharp theorems on traces in Bergman type spaces in tubular domains over symmetric cones”, Journal Siberian Federal University, 6:4 (2013), 527–538
[17] M. Arsenovic, R. Shamoyan, “Trace theorems in harmonic function spaces on $(\mathbb R^{n+1}_+)^m$, multipliers theorems and related problems”, Kragujevac Journal of Mathematics, 2011, 411–430 | MR | Zbl
[18] D. Ehsani, “The $\partial$-Neumann problem on product domains in $C^{n}$”, Math. Ann., 337:4 (2007), 797–816 | DOI | MR | Zbl
[19] D. Charabarta, M.-C. Shaw, “The Cauchy–Riemann equations on product domains”, Math. Ann., 349:4 (2011), 977–998 | DOI | MR
[20] D. Bekolle, A. Bonami, G. Garrigos, C. Nana, M. Peloso, F. Ricci, Lecture notes on Bergman projectors in tube domain over cones, an analytic and geometric viewpoint, Proceeding of the International Workshop on Classical Analysis (Yaounde, 2001), 75 pp. | MR