@article{CHEB_2015_16_2_a14, author = {V. N. Chubarikov}, title = {The arithmetic sum and {Gaussian} multiplication theorem}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {231--253}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2015}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/CHEB_2015_16_2_a14/} }
V. N. Chubarikov. The arithmetic sum and Gaussian multiplication theorem. Čebyševskij sbornik, Tome 16 (2015) no. 2, pp. 231-253. https://geodesic-test.mathdoc.fr/item/CHEB_2015_16_2_a14/
[1] Vinogradov I. M., Foundations of the theory of numbers, Ninth revised edition, Nauka, M., 1981, 176 pp. (Russian)
[2] Vinogradov I. M., The method of trigonometric sums in the theory of numbers, Second edition, Nauka, M., 1980, 144 pp. (Russian)
[3] Chubarikov V. N., “On a multiple trigonometric integral”, Dokl. Akad. Nauk SSSR, 227:6 (1976), 1308–1310 | MR | Zbl
[4] Chubarikov V. N., “Multiple rational trigonometric sums and multiple integrals”, Mat. Zametki, 20:1 (1976), 61–68 | MR | Zbl
[5] Arkhipov G. I., Selected Works, Publisher Oryol State University, Orel, 2013, 464 pp.
[6] Arkhipov G. I., Karatsuba A. A., Chubarikov V. N., Theory of multiple trigonometric sums, Nauka, M., 1987, 368 pp. (Russian)
[7] Arkhipov G. I., Sadovnichii V. A., Chubarikov V. N., Lectures on mathematical analysis, Drofa, M., 2006, 640 pp.
[8] Vinogradov I. M., “A new method of estimation of trigonometrical sums”, Math. USSR-Sb., 43:1 (1936), 175–188
[9] Hua L.-K., “An improvement of Vinogradov's mean-value theorem and several applications”, Quart. J. Math., 20 (1949), 48–61 | DOI | MR | Zbl
[10] Arkhipov G. I., “A theorem on the mean value of the modulus of a multiple trigonometric sum”, Math. Notes, 17 (1975), 84–90 | DOI | MR | Zbl
[11] Arkhipov G. I., Chubarikov V. N., “Multiple trigonometric sums”, Izv. Akad. Nauk SSSR, Ser. Mat., 40:1 (1976), 209–220 | MR | Zbl
[12] Hua L.-K., “On an exponential sums”, J. Chinese Math. Soc., 2 (1940), 301–312 | MR | Zbl
[13] Chen J.-R., “On Professor Hua's estimate on exponential sums”, Acta Sci. Sinica, 20:6 (1977), 711–719 | MR | Zbl
[14] Romanov N. P., Number Theory and Functional Analysis, Proceedings, ed. V. N. Chubarikov, Publishing house of Tomsk State University, Tomsk, 2013, 478 pp.
[15] Shihsadilov M. Sh., “A class of oscillating integrals”, Vestnik Moskov. Univ. Ser. Mat., Mech., 2015, no. 5, 61–63 | MR
[16] Arkhipov G. I., Karatsuba A. A., Chubarikov V. N., “Trigonometric integrals”, Izv. Akad. Nauk SSSR, Ser. Mat., 43:5 (1979), 971–1003 | MR
[17] Titchmarsh E. C., The Theory of the Riemann Zeta-function, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1986 | MR
[18] Arkhipov G. I., Chubarikov V. N., Karatsuba A. A., Trigonometric Sums in Number Theory and Analysis, De Gruyter expositions in mathematics, 39, Berlin–New York, 2004 | MR | Zbl
[19] Hua L.-K., “Additive theory of prime numbers”, Trudy MIAN SSSR, 22, 1947, 1–179 | MR
[20] Montgomery H. L., Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysys, CBMS, Regional Conference Series in Mathematics, 84, 1994 pp. | MR
[21] Hua L.-K., “On the number of solutions of Tarry's problem”, Acta Sci. Sinica, 1 (1953), 1–76 | MR