Gruppi di permutazioni e risultati di irrazionalità
Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 2, pp. 375-400.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We recall some basic concepts in diophantine approximation, in particular the notion of irrationality measure. We describe the main aspects of the permutation group method due to G. Rhin and the author, with some arithmetical applications.
@article{BUMI_2008_9_1_2_a5,
     author = {Viola, Carlo},
     title = {Gruppi di permutazioni e risultati di irrazionalit\`a},
     journal = {Bollettino della Unione matematica italiana},
     pages = {375--400},
     publisher = {mathdoc},
     volume = {Ser. 9, 1},
     number = {2},
     year = {2008},
     zbl = {1215.11073},
     mrnumber = {2424300},
     language = {it},
     url = {https://geodesic-test.mathdoc.fr/item/BUMI_2008_9_1_2_a5/}
}
TY  - JOUR
AU  - Viola, Carlo
TI  - Gruppi di permutazioni e risultati di irrazionalità
JO  - Bollettino della Unione matematica italiana
PY  - 2008
SP  - 375
EP  - 400
VL  - 1
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BUMI_2008_9_1_2_a5/
LA  - it
ID  - BUMI_2008_9_1_2_a5
ER  - 
%0 Journal Article
%A Viola, Carlo
%T Gruppi di permutazioni e risultati di irrazionalità
%J Bollettino della Unione matematica italiana
%D 2008
%P 375-400
%V 1
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BUMI_2008_9_1_2_a5/
%G it
%F BUMI_2008_9_1_2_a5
Viola, Carlo. Gruppi di permutazioni e risultati di irrazionalità. Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 2, pp. 375-400. https://geodesic-test.mathdoc.fr/item/BUMI_2008_9_1_2_a5/

[1] F. Amoroso - C. Viola, Approximation measures for logarithms of algebraic numbers, Ann. Scuola Norm. Sup. Pisa (4) 30 (2001), 225-249. | fulltext EuDML | MR | Zbl

[2] R. Apéry, Irrationalité de $\zeta(2)$ et $\zeta(3)$, Astérisque 61 (1979), 11-13.

[3] K. Ball - T. Rivoal, Irrationalité d'une infinité de valeurs de la fonction zêta aux entiers impairs, Invent. Math. 146 (2001), 193-207. | DOI | MR | Zbl

[4] F. Beukers, A note on the irrationality of $\zeta(2)$ and $\zeta(3)$, Bull. London Math. Soc. 11 (1979), 268-272. | DOI | MR | Zbl

[5] L. Euler, De fractionibus continuis dissertatio, Commentarii Acad. Sci. Imper. Petropol. 9 (1737), 98-137. Opera omnia, ser. I vol. 14, Teubner, Leipzig-Berlin, 1925, 187-215. | MR

[6] S. Fischler, Groupes de Rhin-Viola et intégrales multiples, J. Théor. Nombres Bordeaux 15 (2003), 479-534. | fulltext EuDML | MR | Zbl

[7] L. Giacardi - C. S. Roero - C. Viola, Sui contributi di Lagrange alla teoria dei numeri, Rend. Sem. Mat. Univ. Pol. Torino 53 (1995), 151-181. | MR

[8] G. H. Hardy - E. M. Wright, An Introduction to the Theory of Numbers, IV ediz., Oxford Univ. Press, 1960. | MR

[9] M. Hata, Rational approximations to π and some other numbers, Acta Arith. 63 (1993), 335-349. | fulltext EuDML | DOI | MR | Zbl

[10] M. Hata, Rational approximations to the dilogarithm, Trans. Amer. Math. Soc. 336 (1993), 363-387. | DOI | MR | Zbl

[11] H. Rademacher, Topics in Analytic Number Theory, Grundlehren math. Wiss., Band 169, Springer-Verlag, Berlin-Heidelberg, 1973. | MR | Zbl

[12] G. Rhin - C. Viola, On a permutation group related to $\zeta(2)$, Acta Arith. 77 (1996), 23- 56. | fulltext EuDML | DOI | MR | Zbl

[13] G. Rhin - C. Viola, The group structure for $\zeta(3)$, Acta Arith. 97 (2001), 269-293. | fulltext EuDML | DOI | MR | Zbl

[14] G. Rhin - C. Viola, The permutation group method for the dilogarithm, Ann. Scuola Norm. Sup. Pisa (5) 4 (2005), 389-437. | fulltext EuDML | MR | Zbl

[15] G. Rhin - C. Viola, Multiple integrals and linear forms in zeta-values, Funct. Approx. Comment. Math. 37 (2007), 429-444. | DOI | MR | Zbl

[16] T. Rivoal, La fonction zêta de Riemann prend une infinité de valeurs irrationnelles aux entiers impairs, C. R. Acad. Sci. Paris, Sér. I Math., 331 (2000), 267-270. | DOI | MR | Zbl

[17] K. F. Roth, Rational approximations to algebraic numbers, Mathematika 2 (1955), 1-20. | DOI | MR | Zbl

[18] C. L. Siegel, Über einige Anwendungen diophantischer Approximationen, Abh. Preuss. Akad. Wiss., 1929, n. 1. Gesammelte Abhandlungen, Band I, Springer-Verlag, Berlin-Heidelberg, 1966, 209-266. | MR

[19] C. Viola, Hypergeometric functions and irrationality measures, in: Analytic Number Theory, Y. Motohashi (ed.), London Math. Soc. Lecture Note Series 247, Cambridge Univ. Press, 1997, 353-360. | DOI | MR | Zbl

[20] C. Viola, Birational transformations and values of the Riemann zeta-function, J. Théor. Nombres Bordeaux 15 (2003), 561-592. | fulltext EuDML | MR | Zbl

[21] C. Viola, The arithmetic of Euler's integrals, Riv. Mat. Univ. Parma (7) 3* (2004), 119-149. | MR | Zbl

[22] C. Viola, Approssimazione diofantea, frazioni continue e misure d'irrazionalità, Boll. U.M.I. (8) 7-A (2004), 291-320. Addendum, Boll. U.M.I. (8) 8-A (2005), 179-182. | fulltext bdim | fulltext bdim | fulltext EuDML

[23] C. Viola, On the equivalence of Beukers-type and Sorokin-type multiple integrals, in: Proceedings of the conference "Diophantine and analytic problems in number theory", Moscow, 29/1 - 2/2/2007 (in corso di pubblicazione).

[24] W. Zudilin, Arithmetic of linear forms involving odd zeta values, J. Théor. Nombres Bordeaux 16 (2004), 251-291. | fulltext EuDML | MR | Zbl