On the rate of convergence of the Bézier-type operators
Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 3, pp. 657-666.

Voir la notice de l'article dans Biblioteca Digitale Italiana di Matematica

Per le funzioni limitate $f$ su un intervallo $I$, in particolare, per le funzioni con potenza p-sima a variazione limitata su $I$ è stimato il rango di convergenza puntuale della modificazione di tipo Bezier degli operatori discreti di Feller. Nel teorema principale è stato usato il modulo di variazione di Chanturiya.
@article{BUMI_2006_8_9B_3_a8,
     author = {Anio{\l}, Gra\.zyna},
     title = {On the rate of convergence of the {B\'ezier-type} operators},
     journal = {Bollettino della Unione matematica italiana},
     pages = {657--666},
     publisher = {mathdoc},
     volume = {Ser. 8, 9B},
     number = {3},
     year = {2006},
     zbl = {1182.41019},
     mrnumber = {2274118},
     language = {it},
     url = {https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_3_a8/}
}
TY  - JOUR
AU  - Anioł, Grażyna
TI  - On the rate of convergence of the Bézier-type operators
JO  - Bollettino della Unione matematica italiana
PY  - 2006
SP  - 657
EP  - 666
VL  - 9B
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_3_a8/
LA  - it
ID  - BUMI_2006_8_9B_3_a8
ER  - 
%0 Journal Article
%A Anioł, Grażyna
%T On the rate of convergence of the Bézier-type operators
%J Bollettino della Unione matematica italiana
%D 2006
%P 657-666
%V 9B
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_3_a8/
%G it
%F BUMI_2006_8_9B_3_a8
Anioł, Grażyna. On the rate of convergence of the Bézier-type operators. Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 3, pp. 657-666. https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_3_a8/

[1] G. Aniol, On the rate of convergence of some discrete operators, Demonstratio Math., 27 (1994), 367-377. | Zbl

[2] P. Bezier, Numerical Control-Mathematics and Applications, Wiley, London 1972.

[3] Z.A. Chanturiya, Modulus of variation of function and its application in the theory of Fourier series, Dokl. Akad. Nauk SSSR, 214 (1974), 63-66. | Zbl

[4] W. Feller, An Introduction to Probability Theory and its Applications, II, Wiley, New York, 1966. | Zbl

[5] S. Guo - M.K. Khan, On the rate of convergence of some operators on functions of bounded variation, J. Approx. Theory, 58 (1989), 90-101. | Zbl

[6] M. Heilmann, Direct and converse results for operators of Baskakov-Durrmeyer type, Approx. Theory Appl., 5:1 (1989), 105-127. | Zbl

[7] P. Pych-Taberska, On the rate of convergence of the Feller operators, Ann. Soc. Math. Pol., Commentat. Math., 31 (1991), 147-156. | Zbl

[8] P. Pych-Taberska, On the rate of convergence of the Bézier type operators, Funct. Approximatio, Comment. Math., 28 (2000), 201-209. | Zbl

[9] P. Pych-Taberska, Some properties of the Bézier-Kantorovich type operators, Approx. Theory, 123 (2003), 256-269. | Zbl

[10] X.M. Zeng, On the rate of convergence of two Bernstein-Bézier type operators for bounded variation functions, II, J. Approx. Theory, 104 (2000), 330-344. | Zbl

[11] X.M. Zeng - A. Piriou, On the rate of convergence of two Bernstein-Bézier type operators for bounded variation functions, J. Approx. Theory, 95 (1998), 369-387. | Zbl