Well-posedness of optimization problems and Hausdorff metric on partial maps
Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 3, pp. 645-656.

Voir la notice de l'article dans Biblioteca Digitale Italiana di Matematica

In questo lavoro si studiano alcune proprieta dello spazio $(\mathcal{P}, H_\rho)$ delle mappe parziali con dominio chiuso, munito della topologia della metrica di Hausdorff. Si prova un'equivalenza tra le definizioni di buona posizione secondo Tykhonov e Hadamard di problemi di minimizzazione continui e vincolati, dove la dipendenza continua è descritta dalla metrica di Hausdorff sulle mappe parziali. Lo studio della completezza della metrica di Hausdorff nello spazio delle multifunzioni usco con dominio variabile permette di individuare condizioni per la completa metrizzabilità di $(\mathcal{P}, H_\rho)$
@article{BUMI_2006_8_9B_3_a7,
     author = {Caterino, Alessandro and Ceppitelli, Rita and Hol\`a, \v{L}ubica},
     title = {Well-posedness of optimization problems and {Hausdorff} metric on partial maps},
     journal = {Bollettino della Unione matematica italiana},
     pages = {645--656},
     publisher = {mathdoc},
     volume = {Ser. 8, 9B},
     number = {3},
     year = {2006},
     zbl = {1177.54012},
     mrnumber = {2274117},
     language = {it},
     url = {https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_3_a7/}
}
TY  - JOUR
AU  - Caterino, Alessandro
AU  - Ceppitelli, Rita
AU  - Holà, Ľubica
TI  - Well-posedness of optimization problems and Hausdorff metric on partial maps
JO  - Bollettino della Unione matematica italiana
PY  - 2006
SP  - 645
EP  - 656
VL  - 9B
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_3_a7/
LA  - it
ID  - BUMI_2006_8_9B_3_a7
ER  - 
%0 Journal Article
%A Caterino, Alessandro
%A Ceppitelli, Rita
%A Holà, Ľubica
%T Well-posedness of optimization problems and Hausdorff metric on partial maps
%J Bollettino della Unione matematica italiana
%D 2006
%P 645-656
%V 9B
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_3_a7/
%G it
%F BUMI_2006_8_9B_3_a7
Caterino, Alessandro; Ceppitelli, Rita; Holà, Ľubica. Well-posedness of optimization problems and Hausdorff metric on partial maps. Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 3, pp. 645-656. https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_3_a7/

[1] A. Abd-Allah, Partial maps in algebra and topology, Ph. D. thesis, University of Wales (1979).

[2] A. Abd-Allah - R. Brown, A compact-open topology on partial maps with open domains, J. London Math. Soc., 21 (1980), 480-486. | Zbl

[3] M. Atsuji, Uniform continuity of continuous functions on metric spaces, Pacific J. Math., 8 (1958), 11-16. | Zbl

[4] K. Back, Concepts of similarity for utility functions, J. Math. Econ., 15 (1986), 129-142. | Zbl

[5] P. I. Booth - R. Brown, Spaces of partial maps, fibred mapping spaces and the compact-open topology, Topology Appl., 8 (1978), 181-195. | Zbl

[6] G. Beer, Topologies on Closed and Closed Convex Sets, Kluwer (1993). | Zbl

[7] G. Beer, Metric spaces on which continuous functions are uniformly continuous and Hausdorff distance, Proc. Amer. Math. Soc., 95 (1985), 653-658. | Zbl

[8] G. Beer - A. Di Concilio, A generalization of boundedly compact metric spaces, Comment. Math. Univ. Carolinae, 32, 2 (1991), 361-367. | fulltext EuDML | Zbl

[9] P. Brandi - R. Ceppitelli, Existence, uniqueness and continuous dependence for hereditary differential equations, J. Diff. Equations, 81 (1989), 317-339. | Zbl

[10] P. Brandi - R. Ceppitelli, A new graph topology. Connections with compact open topology, Appl. Analysis, 53 (1994), 185-196. | Zbl

[11] P. Brandi - R. Ceppitelli, A hypertopology intended for functional differential equations, Appl. Analysis, 67 (1997), 73-88. | Zbl

[12] P. Brandi - R. Ceppitelli - Ľ. Holà, Topological properties of a new graph topology, J. of Convex Analysis, 6, N. 1 (1999), 29-40. | fulltext EuDML | Zbl

[13] P. Brandi - R. Ceppitelli - Ľ. Holà, Kuratowski convergence on compacta and Hausdorff metric convergence on compacta, Comment. Math. Univ. Carolinae, 40, 2 (1999), 309-318. | fulltext EuDML | Zbl

[14] P. Brandi - R. Ceppitelli - Ľ. Holà, Boundedly UC spaces, Hypertopologies and well-posedness, Rapporto tecnico N. 13, Department of Mathematics and Informatics, University of Perugia (2001).

[15] R. Ceppitelli - L. Faina, Differential equations with hereditary structure induced by a Volterra type property, Field Institute Communications, 29 (2001), 73-91. | Zbl

[16] J. P. R. Christensen, Theorems of Namioka and R.E. Johnson type for upper semicontinuous and compact valued set-valued mappings, Proc. Amer. Math. Soc., 86 (1982), 649-655. | Zbl

[17] A. Di Concilio - S. A. Naimpally, Proximal set-open topologies, Boll. U.M.I., 8, 1B (2000), 173-191. | fulltext bdim | fulltext EuDML | Zbl

[18] A. Di Concilio - S. A. Naimpally, Function space topologies on (partial) maps, Recent progress in function spaces, Quaderni di Matematica (G. DI MAIO and Ľ. HOLÀ eds.), 3 (1999).

[19] R. Engelking, General Topology, Polish Scientific Publishers, Warszaw, (1977).

[20] V. V. Filippov, Basic topological structures of the theory of ordinary differential equations, Topology in Nonlinear Analysis, Banach Centrum Publications, 35 (1996), 171-192. | fulltext EuDML | Zbl

[21] Ľ. Holà, Hausdorff metric on the space of upper semicontinuous multifunctions, Rocky Mountain Journal of Mathematics, 22 (1992), 601-610. | Zbl

[22] Ľ. Holà, Complete metrizability of generalized compact-open topology, Topology and its Applications, 91(1999), 159-167. | Zbl

[23] Ľ. Holà - D. Holy, Further characterizations of boundedly UC spaces, Comment. Math. Univ. Carolinae, 34, 1 (1993), 175-183. | fulltext EuDML | Zbl

[24] Ľ. Holà - L. Zsilinszky, Completeness properties of the generalized compact-open topology on partial functions with closed domains, Topology Appl., 110 (2001), 303-321. | Zbl

[25] Ľ. Holà - L. Zsilinszky, Completeness properties of the Vietoris topology on partial functions with compact domains, preprint. | Zbl

[26] J. L. Kelley, General Topology, Van Nostrand Reinhold Company, (1955).

[27] H. P. Kunzi - L. B. Shapiro, On simultaneous extension of continuous partial functions, Proc. Amer. Math. Soc., 125 (1997), 1853-1859. | Zbl

[28] K. Kuratowski, Sur l'espace des fonctions partielles, Ann. Mat. Pura Appl. 40 (1955), 61-67. | Zbl

[29] K. J. Langen, Convergence of dynamic programming models, Mathematics of Operations research, 6 (1981), 493-512. | Zbl

[30] N. Levine, Remarks on uniform continuity in metric spaces, Amer. Math. Monthly, 67 (1979), 562-563. | Zbl

[31] J. Nagata, On the uniform topology of bicompactifications, J. Inst. Polytech. Osaka City University, 1 (1950), 28-38. | Zbl

[32] P. J. Nyikos - L. Zsilinszky, Strong α-favorability of the (generalized) compactopen topology, Atti Sem. Mat. Fis. Univ. Modena, to appear.

[33] J. P. Revalski, Various aspects of well-posedness of optimization problems, in R. Lucchetti - J.P. Revalski (eds), «Recent developments in well-posed variational problems», Kluwer (1995), 229-256. | Zbl

[34] J. P. Revalski - N. V. Zhivkov, Well-posed constrained optimization problems in metric spaces, J. Opt. Theory Appl., 76 (1993), 145-163. | Zbl

[35] G. R. Sell, On the Fundamental Theory of Ordinary Differential Equations, J. differential Equations, 1 (1965), 371-392. | Zbl

[36] A. N. Tykhonov, On the stability of the functional optimization problems, USSR J. Comp. Math. Phys., 6 (1966), 631-634.

[37] W. Waterhouse, On UC spaces, Amer. Math. Mountly, 72 (1965), 634-635. | Zbl

[38] S. K. Zaremba, Sur certaines familles de courbes en relations avec la theorie des equations differentielles, Rocznik Polskiego Tow. Matemat., 15 (1936), 83-105. | Zbl