Voir la notice de l'article dans Biblioteca Digitale Italiana di Matematica
@article{BUMI_2006_8_9B_3_a4, author = {De Donno, Giuseppe and Oliaro, Alessandro}, title = {Hypoellipticity and local solvability of anisotropic {PDEs} with {Gevrey} nonlinearity}, journal = {Bollettino della Unione matematica italiana}, pages = {583--610}, publisher = {mathdoc}, volume = {Ser. 8, 9B}, number = {3}, year = {2006}, zbl = {1121.35029}, mrnumber = {2274114}, language = {it}, url = {https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_3_a4/} }
TY - JOUR AU - De Donno, Giuseppe AU - Oliaro, Alessandro TI - Hypoellipticity and local solvability of anisotropic PDEs with Gevrey nonlinearity JO - Bollettino della Unione matematica italiana PY - 2006 SP - 583 EP - 610 VL - 9B IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_3_a4/ LA - it ID - BUMI_2006_8_9B_3_a4 ER -
%0 Journal Article %A De Donno, Giuseppe %A Oliaro, Alessandro %T Hypoellipticity and local solvability of anisotropic PDEs with Gevrey nonlinearity %J Bollettino della Unione matematica italiana %D 2006 %P 583-610 %V 9B %N 3 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_3_a4/ %G it %F BUMI_2006_8_9B_3_a4
De Donno, Giuseppe; Oliaro, Alessandro. Hypoellipticity and local solvability of anisotropic PDEs with Gevrey nonlinearity. Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 3, pp. 583-610. https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_3_a4/
[1] Hyperbolic equations, function spaces with exponential weights and Nemytskij operators, Ann. Mat. Pura Appl., 4 182 (2003), no. 4, 409-455. | Zbl
- - ,[2] Nonlinear estimates in anisotropic Gevrey spaces, Pliska Stud. Math. Bulgar. 15 (2003), 149-160.
- ,[3] On local solvability in Gevrey classes of linear partial differential operators with multiple characteristics, Comm. Partial Differential Equations 14 (1989), 1-25. | Zbl
,[4] On local solvability of linear partial differential operators with multiple characteristics, J. Differential Equations, 81 (1989), 275-293. | Zbl
,[5] Local solvability and hypoellipticity in Gevrey classes for semilinear anisotropic partial differential equations, Trans. Amer. Math. Soc., 355 (2003), no. 8, 3405-3432. | Zbl
- ,[6] Gevrey hypoellipticity for partial differential equations with characteristics of higher multiplicity, Rend. Sem. Mat. Univ. Politec. Torino, 58 (2000), no. 4, 435-448 (2003). | fulltext EuDML | Zbl
- ,[7] Inhomogeneuos paramultiplication and microlocal singularities for semilinear equations, Boll. Un. Mat. Ital. B. (7), 10 (1996), 885-902. | Zbl
,[8] Local solvability for semilinear equations with multiple characteristics, Ann. Univ. Ferrara Sez. VII, (N.S.) 41, (1996), 199-209, suppl. | Zbl
,[9] On the critical index of Gevrey solvability for some linear partial differential equations, Workshop on Partial Differential Equations (Ferrara 1999), Ann. Univ. Ferrara Sez. VII (N.S.), suppl., 45 (2000), 139-153. | Zbl
,[10] Local Solvability of Semilinear Partial Differential Equations, Ann. Univ. Ferrara Sez. VII - Sc. Mat., 35 (1989), 147-154. | Zbl
- ,[11] Critical Gevrey Index for Hypoellipticity of Parabolic Equations and Newton Polygones, Ann. Mat. Pura Appl., 170 (1996), 103-131. | Zbl
, - ,[12] Gevrey solvability for semilinear partial differential equations with multiple characterisitics, Boll. Un. Mat. Ital., B (8) 2 (1999), 65-120. | fulltext EuDML | Zbl
,[13] The analysis of linear partial differential operators, vol. I, II, III, IV, Springer-Verlag, Berlin, 1983-85.
,[14] On the local solvability of semilinear equations, Comm. in Partial Differential Equations, 20 (1995), 1777-1789. | Zbl
- ,[15] Majorations $L^2$ et inégalité sous-elliptique pour les opérateurs pseudo-différentiels anisotropes d'ordre variable, C. R. Acad. Sci. Paris, 268 (1969), 214-217. | Zbl
- ,[16] Opérateurs pseudo-différentiels anisotropes d'ordre variable, C. R. Acad. Sci. Paris, 268 (1969), 28-31. | Zbl
- ,[17] Hypoelliptic operators in Gevrey classes, in ``Recent developments in hyperbolic equations'' L. Cattabriga, F. Colombini, M.K.V. Murthy (London) (S. Spagnolo, ed.), Longman, 1988, 115-134. | Zbl
- ,[18] Ultradistributions, I: Structure theorems and a characterisation; II: The kernel theorem and ultradistributions with support in a submanifold; III: Vector valued ultradistributions and the theory of kernels, J. Fac. Sci. Univ. Tokyo, Sect. IA 20 (1973), 25-105, 24 (1977), 607-628, 29 (1982), 653-717.
,[19] Inhomogeneous Gevrey classes and related pseudo-differential operators, Boll. Un. Mat. Ital., Sez. IV, 3-C (1984), 133-223. | Zbl
- ,[20] Linear partial differential equations with multiple involutive characteristics, in ``Microlocal analysis and spectral theory'' (Dordrecht) (L. Rodino, ed.), Kluwer, 1997, 1-38. | Zbl
- ,[21] Anisotropic operators with characteristics of constant multiplicity, Math. Nachr., 124 (1985), 199-216. | Zbl
,[22] Stability and instability for Gevrey quasi-convex near integrable Hamiltonian systems, Publ. Math. Inst. Hautes Études Sci. 96 (2002), 199-275. | fulltext EuDML | Zbl
- ,[23] Local Solvability for Semilinear Anisotropic Partial Differential Equations, Annali Mat. Pura Appl. (4) 179 (2001), 229-262. | Zbl
, ,[24] Partial differential equations with multiple characteristics, Wiley-VCH, Berlin, 1997. | Zbl
- ,[25] Microlocal properties of a class of pseudodifferential operators with double involutive characteristics, Partial differential equations (Warsaw, 1984), Banach Center Publ., PWN, Warsaw, 19 (1987), 213-224. | fulltext EuDML
,[26] Local solvability of some classes of linear differential operators with multiple characteristics, Ann. Univ. Ferrara, VII, Sc. Mat., 45 (1999), 263-274. | Zbl
,[27] Microlocal properties of a class of pseudo-differential operators with multiple characteristics, Serdica, 6 (1980), 169-183.
- ,[28] Linear partial differential operators in Gevrey spaces, World Scientific, Singapore, 1993. | Zbl
,[29] Ultra-distributions définies sur $\mathbb{R}^n$ et sur certaines classes de variétés differentiables, J. Analyse Math., 10 1962/1963, 153-192. | Zbl
,[30] Topological Vector Spaces, Distributions and Kernels, Academic Press, New York, 1967.
,[31] The local solvability of equations of quasi-principal type, Mat. Sb. (N.S.) 97 (139), no 4 (8) (1975), 503-516.
,[32] Singularities of solution of the cauchy problem for hyperbolic system in gevrey classes, Japan J. Math., 11 (1985), 157-201. | Zbl
,