Hypoellipticity and local solvability of anisotropic PDEs with Gevrey nonlinearity
Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 3, pp. 583-610.

Voir la notice de l'article dans Biblioteca Digitale Italiana di Matematica

In questo articolo viene proposto un approccio unificato, che si basa sulle tecniche dell'analisi microlocale, per caratterizzare sia l'ipoellitticità sia la risolubilità locale, in $C^\infty$ e nelle classi di Gevrey $G^\lambda$, di operatori alle derivate parziali anisotropi, in dimensione $n \geq 3$, i quali, vengono perturbati con non linearità di tipo Gevrey. Per ottenere questi risultati sono state imposte alcune condizioni sul segno dei termini di ordine inferiore della parte lineare dell'operatore, vedere Teorema 1.1 e Teorema 1.3.
@article{BUMI_2006_8_9B_3_a4,
     author = {De Donno, Giuseppe and Oliaro, Alessandro},
     title = {Hypoellipticity and local solvability of anisotropic {PDEs} with {Gevrey} nonlinearity},
     journal = {Bollettino della Unione matematica italiana},
     pages = {583--610},
     publisher = {mathdoc},
     volume = {Ser. 8, 9B},
     number = {3},
     year = {2006},
     zbl = {1121.35029},
     mrnumber = {2274114},
     language = {it},
     url = {https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_3_a4/}
}
TY  - JOUR
AU  - De Donno, Giuseppe
AU  - Oliaro, Alessandro
TI  - Hypoellipticity and local solvability of anisotropic PDEs with Gevrey nonlinearity
JO  - Bollettino della Unione matematica italiana
PY  - 2006
SP  - 583
EP  - 610
VL  - 9B
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_3_a4/
LA  - it
ID  - BUMI_2006_8_9B_3_a4
ER  - 
%0 Journal Article
%A De Donno, Giuseppe
%A Oliaro, Alessandro
%T Hypoellipticity and local solvability of anisotropic PDEs with Gevrey nonlinearity
%J Bollettino della Unione matematica italiana
%D 2006
%P 583-610
%V 9B
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_3_a4/
%G it
%F BUMI_2006_8_9B_3_a4
De Donno, Giuseppe; Oliaro, Alessandro. Hypoellipticity and local solvability of anisotropic PDEs with Gevrey nonlinearity. Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 3, pp. 583-610. https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_3_a4/

[1] G. Bourdaud - M. Reissig - W. Sickel, Hyperbolic equations, function spaces with exponential weights and Nemytskij operators, Ann. Mat. Pura Appl., 4 182 (2003), no. 4, 409-455. | Zbl

[2] L. Cadeddu - T. Gramchev, Nonlinear estimates in anisotropic Gevrey spaces, Pliska Stud. Math. Bulgar. 15 (2003), 149-160.

[3] A. Corli, On local solvability in Gevrey classes of linear partial differential operators with multiple characteristics, Comm. Partial Differential Equations 14 (1989), 1-25. | Zbl

[4] A. Corli, On local solvability of linear partial differential operators with multiple characteristics, J. Differential Equations, 81 (1989), 275-293. | Zbl

[5] G. De Donno - A. Oliaro, Local solvability and hypoellipticity in Gevrey classes for semilinear anisotropic partial differential equations, Trans. Amer. Math. Soc., 355 (2003), no. 8, 3405-3432. | Zbl

[6] G. De Donno - L. Rodino, Gevrey hypoellipticity for partial differential equations with characteristics of higher multiplicity, Rend. Sem. Mat. Univ. Politec. Torino, 58 (2000), no. 4, 435-448 (2003). | fulltext EuDML | Zbl

[7] G. Garello, Inhomogeneuos paramultiplication and microlocal singularities for semilinear equations, Boll. Un. Mat. Ital. B. (7), 10 (1996), 885-902. | Zbl

[8] G. Garello, Local solvability for semilinear equations with multiple characteristics, Ann. Univ. Ferrara Sez. VII, (N.S.) 41, (1996), 199-209, suppl. | Zbl

[9] T. Gramchev, On the critical index of Gevrey solvability for some linear partial differential equations, Workshop on Partial Differential Equations (Ferrara 1999), Ann. Univ. Ferrara Sez. VII (N.S.), suppl., 45 (2000), 139-153. | Zbl

[10] T. Gramchev - P. Popivanov, Local Solvability of Semilinear Partial Differential Equations, Ann. Univ. Ferrara Sez. VII - Sc. Mat., 35 (1989), 147-154. | Zbl

[11] T. Gramchev, P. Popivanov - M. Yoshino, Critical Gevrey Index for Hypoellipticity of Parabolic Equations and Newton Polygones, Ann. Mat. Pura Appl., 170 (1996), 103-131. | Zbl

[12] T. Gramchev L. Rodino, Gevrey solvability for semilinear partial differential equations with multiple characterisitics, Boll. Un. Mat. Ital., B (8) 2 (1999), 65-120. | fulltext EuDML | Zbl

[13] L. Hörmander, The analysis of linear partial differential operators, vol. I, II, III, IV, Springer-Verlag, Berlin, 1983-85.

[14] J. Hounie - P. Santiago, On the local solvability of semilinear equations, Comm. in Partial Differential Equations, 20 (1995), 1777-1789. | Zbl

[15] C. Hunt - A. Piriou, Majorations $L^2$ et inégalité sous-elliptique pour les opérateurs pseudo-différentiels anisotropes d'ordre variable, C. R. Acad. Sci. Paris, 268 (1969), 214-217. | Zbl

[16] C. Hunt - A. Piriou, Opérateurs pseudo-différentiels anisotropes d'ordre variable, C. R. Acad. Sci. Paris, 268 (1969), 28-31. | Zbl

[17] K. Kajitani - S. Wakabayashi, Hypoelliptic operators in Gevrey classes, in ``Recent developments in hyperbolic equations'' L. Cattabriga, F. Colombini, M.K.V. Murthy (London) (S. Spagnolo, ed.), Longman, 1988, 115-134. | Zbl

[18] H. Komatsu, Ultradistributions, I: Structure theorems and a characterisation; II: The kernel theorem and ultradistributions with support in a submanifold; III: Vector valued ultradistributions and the theory of kernels, J. Fac. Sci. Univ. Tokyo, Sect. IA 20 (1973), 25-105, 24 (1977), 607-628, 29 (1982), 653-717.

[19] O. Liess - L. Rodino, Inhomogeneous Gevrey classes and related pseudo-differential operators, Boll. Un. Mat. Ital., Sez. IV, 3-C (1984), 133-223. | Zbl

[20] O. Liess - L. Rodino, Linear partial differential equations with multiple involutive characteristics, in ``Microlocal analysis and spectral theory'' (Dordrecht) (L. Rodino, ed.), Kluwer, 1997, 1-38. | Zbl

[21] M. Lorenz, Anisotropic operators with characteristics of constant multiplicity, Math. Nachr., 124 (1985), 199-216. | Zbl

[22] J.-P. Marco - D. Sauzin, Stability and instability for Gevrey quasi-convex near integrable Hamiltonian systems, Publ. Math. Inst. Hautes Études Sci. 96 (2002), 199-275. | fulltext EuDML | Zbl

[23] P. Marcolongo, A. Oliaro, Local Solvability for Semilinear Anisotropic Partial Differential Equations, Annali Mat. Pura Appl. (4) 179 (2001), 229-262. | Zbl

[24] M. Mascarello - L. Rodino, Partial differential equations with multiple characteristics, Wiley-VCH, Berlin, 1997. | Zbl

[25] P. R. Popivanov, Microlocal properties of a class of pseudodifferential operators with double involutive characteristics, Partial differential equations (Warsaw, 1984), Banach Center Publ., PWN, Warsaw, 19 (1987), 213-224. | fulltext EuDML

[26] P. R. Popivanov, Local solvability of some classes of linear differential operators with multiple characteristics, Ann. Univ. Ferrara, VII, Sc. Mat., 45 (1999), 263-274. | Zbl

[27] P. R. Popivanov - G. S. Popov, Microlocal properties of a class of pseudo-differential operators with multiple characteristics, Serdica, 6 (1980), 169-183.

[28] L. Rodino, Linear partial differential operators in Gevrey spaces, World Scientific, Singapore, 1993. | Zbl

[29] C. Roumieu, Ultra-distributions définies sur $\mathbb{R}^n$ et sur certaines classes de variétés differentiables, J. Analyse Math., 10 1962/1963, 153-192. | Zbl

[30] F. Trèves, Topological Vector Spaces, Distributions and Kernels, Academic Press, New York, 1967.

[31] N. A. Šananin, The local solvability of equations of quasi-principal type, Mat. Sb. (N.S.) 97 (139), no 4 (8) (1975), 503-516.

[32] S. Wakabayashi, Singularities of solution of the cauchy problem for hyperbolic system in gevrey classes, Japan J. Math., 11 (1985), 157-201. | Zbl