On some properties of explicit toric degenerations
Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 3, pp. 779-784.

Voir la notice de l'article dans Biblioteca Digitale Italiana di Matematica

Nella presente nota si studiano delle degenerazioni semi-stabili di varietà toriche determinate da certe partizioni dei loro politopi associati. In un caso particolare vengono date le loro equazioni attraverso un'analisi combinatorica. I dettagli, le dimostrazioni e ulteriori esempi si trovano nel preprint [7] e verranno pubblicati altrove. In un successivo articolo [4] verrà discussa una interpretazione geometrica.
@article{BUMI_2006_8_9B_3_a16,
     author = {Marchisio, M. and Perduca, V.},
     title = {On some properties of explicit toric degenerations},
     journal = {Bollettino della Unione matematica italiana},
     pages = {779--784},
     publisher = {mathdoc},
     volume = {Ser. 8, 9B},
     number = {3},
     year = {2006},
     zbl = {1150.14010},
     language = {it},
     url = {https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_3_a16/}
}
TY  - JOUR
AU  - Marchisio, M.
AU  - Perduca, V.
TI  - On some properties of explicit toric degenerations
JO  - Bollettino della Unione matematica italiana
PY  - 2006
SP  - 779
EP  - 784
VL  - 9B
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_3_a16/
LA  - it
ID  - BUMI_2006_8_9B_3_a16
ER  - 
%0 Journal Article
%A Marchisio, M.
%A Perduca, V.
%T On some properties of explicit toric degenerations
%J Bollettino della Unione matematica italiana
%D 2006
%P 779-784
%V 9B
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_3_a16/
%G it
%F BUMI_2006_8_9B_3_a16
Marchisio, M.; Perduca, V. On some properties of explicit toric degenerations. Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 3, pp. 779-784. https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_3_a16/

[1] V. Alexeev, Complete moduli in the presence of semiabelian group action, Ann. Math., 155 (2002), 611-708. | Zbl

[2] D. Cox, What is a toric variety?, Topics in algebraic geometry and geometric modeling, 203-223, Contemp. Math., 334, Amer. Math. Soc., Providence, RI, (2003); also avalaible at http://www.amherst.edu/dacox/ | Zbl

[3] W. Fulton, Introduction to Toric Varieties, Ann. of Math. Studies, 13, Princeton University Press, (1993). | Zbl

[4] A. Grassi - M. Marchisio - V. Perduca, On Some Geometric Properties of Explicit Toric Degenerations, in preparation. | Zbl

[5] D. R. Grayson - M. E. Stillman, Macaulay 2, a software system for research in algebraic geometry, Avalaible at http://www.math.uiuc.edu/Macaulay2/

[6] S. Hu, Semistable Degeneration of Toric Varieties and Their Hypersurfaces, Communications in Analysis and Geometry, 14, n. 1 (2006), 59-89; arXiv:math.AG/0110091, (2001), 1-26.

[7] M. Marchisio - V. Perduca, On Some Properties of Explicit Toric Degenerations, preprint, 2006. | Zbl

[8] T. Oda, Convex Bodies and Algebraic Geometry, 15, Springer-Verlag, Berlin Heidelberg (1988). | fulltext EuDML | Zbl

[9] F. Sottile, Toric ideals, real toric varieties, and the moment map, Topics in algebraic geometry and geometric modeling, 225-240, Contemp. Math., 334, Amer. Math. Soc., Providence, RI, (2003); arXiv:math.AG/0212044. | Zbl

[10] B. Strumfels, Grobner Bases and Convex Polytopes, American Mathematical Society, University Lecture Series, 8, Providence, RI (1996). MR 97b:13034.