Voir la notice de l'article dans Biblioteca Digitale Italiana di Matematica
@article{BUMI_2006_8_9B_3_a16, author = {Marchisio, M. and Perduca, V.}, title = {On some properties of explicit toric degenerations}, journal = {Bollettino della Unione matematica italiana}, pages = {779--784}, publisher = {mathdoc}, volume = {Ser. 8, 9B}, number = {3}, year = {2006}, zbl = {1150.14010}, language = {it}, url = {https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_3_a16/} }
TY - JOUR AU - Marchisio, M. AU - Perduca, V. TI - On some properties of explicit toric degenerations JO - Bollettino della Unione matematica italiana PY - 2006 SP - 779 EP - 784 VL - 9B IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_3_a16/ LA - it ID - BUMI_2006_8_9B_3_a16 ER -
Marchisio, M.; Perduca, V. On some properties of explicit toric degenerations. Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 3, pp. 779-784. https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_3_a16/
[1] Complete moduli in the presence of semiabelian group action, Ann. Math., 155 (2002), 611-708. | Zbl
,[2] What is a toric variety?, Topics in algebraic geometry and geometric modeling, 203-223, Contemp. Math., 334, Amer. Math. Soc., Providence, RI, (2003); also avalaible at http://www.amherst.edu/dacox/ | Zbl
,[3] Introduction to Toric Varieties, Ann. of Math. Studies, 13, Princeton University Press, (1993). | Zbl
,[4] On Some Geometric Properties of Explicit Toric Degenerations, in preparation. | Zbl
- - ,[5] Macaulay 2, a software system for research in algebraic geometry, Avalaible at http://www.math.uiuc.edu/Macaulay2/
- ,[6] Semistable Degeneration of Toric Varieties and Their Hypersurfaces, Communications in Analysis and Geometry, 14, n. 1 (2006), 59-89; arXiv:math.AG/0110091, (2001), 1-26.
,[7] On Some Properties of Explicit Toric Degenerations, preprint, 2006. | Zbl
- ,[8] Convex Bodies and Algebraic Geometry, 15, Springer-Verlag, Berlin Heidelberg (1988). | fulltext EuDML | Zbl
,[9] Toric ideals, real toric varieties, and the moment map, Topics in algebraic geometry and geometric modeling, 225-240, Contemp. Math., 334, Amer. Math. Soc., Providence, RI, (2003); arXiv:math.AG/0212044. | Zbl
,[10] Grobner Bases and Convex Polytopes, American Mathematical Society, University Lecture Series, 8, Providence, RI (1996). MR 97b:13034.
,