The Kodaira dimension of Siegel modular varieties of genus 3 or higher
Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 3, pp. 749-776.

Voir la notice de l'article dans Biblioteca Digitale Italiana di Matematica

Consideriamo lo spazio dei moduli $A_{\text{pol}}(n)$ delle varietà abeliane (non principalmente) polarizzate di genere $g \geq 3$ con polarizzazione coprima e struttura di livello n completa. Basandoci sull'analisi dei building di Tits di [S], diamo un limite inferiore esplicito per n che è sufficiente affinché lo spazio dei moduli compattificato sia di tipo generale, se un'ulteriore condizione esplicita viene soddisfatta.
@article{BUMI_2006_8_9B_3_a15,
     author = {Schellhammer, Eric},
     title = {The {Kodaira} dimension of {Siegel} modular varieties of genus 3 or higher},
     journal = {Bollettino della Unione matematica italiana},
     pages = {749--776},
     publisher = {mathdoc},
     volume = {Ser. 8, 9B},
     number = {3},
     year = {2006},
     zbl = {1182.14017},
     mrnumber = {2274125},
     language = {it},
     url = {https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_3_a15/}
}
TY  - JOUR
AU  - Schellhammer, Eric
TI  - The Kodaira dimension of Siegel modular varieties of genus 3 or higher
JO  - Bollettino della Unione matematica italiana
PY  - 2006
SP  - 749
EP  - 776
VL  - 9B
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_3_a15/
LA  - it
ID  - BUMI_2006_8_9B_3_a15
ER  - 
%0 Journal Article
%A Schellhammer, Eric
%T The Kodaira dimension of Siegel modular varieties of genus 3 or higher
%J Bollettino della Unione matematica italiana
%D 2006
%P 749-776
%V 9B
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_3_a15/
%G it
%F BUMI_2006_8_9B_3_a15
Schellhammer, Eric. The Kodaira dimension of Siegel modular varieties of genus 3 or higher. Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 3, pp. 749-776. https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_3_a15/

[AMRT] A. Ash - D. Mumford - M. Rapoport - Y. Tai, Smooth Compactification of Locally Symmetric Varieties, Brookline: Math. Sci Press 1975. | Zbl

[B] H.-J. Brasch, Lifting level D-structures of abelian varieties, Arch. Math., Vol. 60 (1993), 553-562. | Zbl

[BC] E. S. Barnes - M. J. Cohn, On the inner product of positive quadratic forms, J. London Math. Soc. (2), 12 (1975), 32-36. | Zbl

[BL] C. Birkenhake - H. Lange, An isomorphism between moduli spaces of abelian varieties, Math. Nach., Vol. 253, Iss. 1 (2003), 3-7. | Zbl

[C] J. W. S. Cassels, An introduction to the geometry of numbers, Springer-Verlag, 1959. | Zbl

[F] E. Freitag, Siegelsche Modulfunktionen, Springer-Verlag, 1983.

[H] K. Hulek, Igusa's Modular Form and the Classification of Siegel Modular Threefolds, Moduli of Abelian Varieties. Progress in Mathematics 195, Birkhauser Verlag (2001), 217-229. | Zbl

[HKW] K. Hulek - C. Kahn - S. H. Weintraub, Moduli Spaces of Abelian Surfaces: Compactification, Degenerations and Theta Functions, De Gruyter Expositions in Mathematics 12, 1993. | Zbl

[HS] K. Hulek - G. K. Sankaran, The Geometry of Siegel Modular Varieties, Advanced Studies in Pure Mathematics 35 (2002), Higher Dimensional Birational Geometry, 89-156. | Zbl

[M] D. Mumford, Hirzebruch's Proportionality Theorem in the Non-Compact Case, Inv. Math., 42 (1977), 239-272. | fulltext EuDML | Zbl

[M2] D. Mumford, On the Kodaira Dimension of the Siegel Modular Variety, Lec. Notes in Math. Vol. 997, Springer-Verlag, 1983, 348-376. | Zbl

[Nami] Y. Namikawa, Toroidal Compactification of Siegel Spaces, Lec. Notes in Math. Vol. 812, Springer-Verlag, 1980. | Zbl

[Nath] M. B. Nathanson, Elementary Methods in Number Theory, Springer-Verlag, 1991.

[O] T. Oda, Convex Bodies and Algebraic Geometry. An Introduction to the Theory of Toric Varieties, Ergeb. Math. Grenzgeb., 3 Folge, 15 (1988), Berlin, Springer-Verlag. | fulltext EuDML | Zbl

[S] E. Schellhammer, On the Tits building of paramodular groups http://arXiv.org/abs/math/0405321 | Zbl

[T] Y.-S. Tai, On the Kodaira Dimension of the Moduli Space of Abelian Varieties, Invent. Math., 68 (1982), 425-439. | fulltext EuDML | Zbl

[T2] Y.-S. Tai, On the Kodaira Dimension of the Moduli Spaces of Abelian Varieties with non-principal polarizations, In: Abelian Varietes, Egloffstein 1993, 293-302, de Gruyter, 1995. | Zbl