Voir la notice de l'article dans Biblioteca Digitale Italiana di Matematica
@article{BUMI_2006_8_9B_3_a12, author = {Ciavarella, Miriam}, title = {Eisenstein ideal and reducible $\lambda$-adic {Representations} {Unramified} {Outside} a {Finite} {Number} of {Primes.}}, journal = {Bollettino della Unione matematica italiana}, pages = {711--721}, publisher = {mathdoc}, volume = {Ser. 8, 9B}, number = {3}, year = {2006}, zbl = {1177.11042}, mrnumber = {2274122}, language = {it}, url = {https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_3_a12/} }
TY - JOUR AU - Ciavarella, Miriam TI - Eisenstein ideal and reducible $\lambda$-adic Representations Unramified Outside a Finite Number of Primes. JO - Bollettino della Unione matematica italiana PY - 2006 SP - 711 EP - 721 VL - 9B IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_3_a12/ LA - it ID - BUMI_2006_8_9B_3_a12 ER -
%0 Journal Article %A Ciavarella, Miriam %T Eisenstein ideal and reducible $\lambda$-adic Representations Unramified Outside a Finite Number of Primes. %J Bollettino della Unione matematica italiana %D 2006 %P 711-721 %V 9B %N 3 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_3_a12/ %G it %F BUMI_2006_8_9B_3_a12
Ciavarella, Miriam. Eisenstein ideal and reducible $\lambda$-adic Representations Unramified Outside a Finite Number of Primes.. Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 3, pp. 711-721. https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_3_a12/
[1] Introduction to Commutative Algebra, University of Oxford, Addison-Wesley Publishing Company, 1969. | Zbl
- ,[2] Formes modulaires et representations galoisiennes valeurs dans un anneau local complet, Contemporary Mathematics, Volume 165, Amer. Math. Soc., Providence, RI, 1994, 213-237. | Zbl
,[3] Eisenstein ideals and $\lambda$-adic representations, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 28 1981, no. 3 (1982), 651-665. | Zbl
- ,[4] An introduction to the deformation theory of Galois representation. In Modular Forms and Fermat's Last Theorem, G. Cornell, J. H. Silverman, G. Stevens, Eds. Springer, 43-311.
,[5] The irregular prime to 125.000, Math. Comp., 32 (1978), 583-591. | Zbl
,[6] Modular elliptic curves and Fermat last Theorem, Ann. of Math., 141 (1995), 443-551. | Zbl
,