Discretized $C^*$-Algebras
Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 3, pp. 697-709.

Voir la notice de l'article dans Biblioteca Digitale Italiana di Matematica

Definiamo relazioni canoniche discretizzate associate ad automorfismi di ordine finito di gruppi abeliani discreti. Questa è una generalizzazione di autoe Á morfismi di ordine finito di algebre di rotazione. Si dimostrano anche proprieta di particolari operatori di Schrödinger che derivano da queste relazioni.
@article{BUMI_2006_8_9B_3_a11,
     author = {Farsi, Carla and Watling, Neil},
     title = {Discretized $C^*${-Algebras}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {697--709},
     publisher = {mathdoc},
     volume = {Ser. 8, 9B},
     number = {3},
     year = {2006},
     zbl = {1178.46051},
     mrnumber = {2274121},
     language = {it},
     url = {https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_3_a11/}
}
TY  - JOUR
AU  - Farsi, Carla
AU  - Watling, Neil
TI  - Discretized $C^*$-Algebras
JO  - Bollettino della Unione matematica italiana
PY  - 2006
SP  - 697
EP  - 709
VL  - 9B
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_3_a11/
LA  - it
ID  - BUMI_2006_8_9B_3_a11
ER  - 
%0 Journal Article
%A Farsi, Carla
%A Watling, Neil
%T Discretized $C^*$-Algebras
%J Bollettino della Unione matematica italiana
%D 2006
%P 697-709
%V 9B
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_3_a11/
%G it
%F BUMI_2006_8_9B_3_a11
Farsi, Carla; Watling, Neil. Discretized $C^*$-Algebras. Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 3, pp. 697-709. https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_3_a11/

[1] W. Arveson, Discretized CCR algebras, J. Operator Theory, 26 (1991), 225-239.

[2] W. Arveson, Non-commutative spheres and numerical quantum mechanics, Operator algebras, mathematical physics and low dimensional topology, 1-10. | Zbl

[3] O. Bratteli - G.A. Elliott - D.E. Evans - A. Kishimoto, Non commutative spheres I, International. J. Math., 2 (1991), 139-166. | Zbl

[4] O. Bratteli - G.A. Elliott - D.E. Evans - A. Kishimoto, Non commutative spheres II, Rational Rotations, J. Operator Theory, 27 (1992), 53-85. | Zbl

[5] O. Bratteli - A. Kishimoto, Non commutative spheres III, Irrational Rotations, Commun. Math. Phys., 147 (1992), 605-624. | Zbl

[6] M.-D. Choi - G. Elliott - N. Yui, Gauss polynomials and the rotation algebra, Inv. Math., 99 (1990), 225-246. | fulltext EuDML | Zbl

[7] G.A. Elliott, On the K-theory of the $C^*$-algebra generated by a projective representation of a torsion-free discrete abelian group, Operator Algebras and Group Representations, 1 Pitman, London (1984), 157-184.

[8] G.A. Elliott, Gaps in the spectrum of an almost Schrödinger operator, Geometric Methods in Operator Algebras-Proceedings of the US-Japan Conference July 11-15 (1983), 181-191.

[9] C. Farsi - N. Watling, Quartic algebras, Can. J. Math, 44 (1992), 1167-1191.

[10] C. Farsi - N. Watling, Fixed point subalgebras of the rotation algebra, C.R. Math. Rep. Acad. Sci. Canada, XIII (1991), 75-80. | Zbl

[11] C. Farsi - N. Watling, Trivial fixed point subalgebras of the rotation algebra, Math. Scand., 72 (1993), 298-302. | fulltext EuDML | Zbl

[12] C. Farsi - N. Watling, Cubic algebras, J. Operator Theory, 30 (1993), 243-266.

[13] C. Farsi - N. Watling, Elliptic algebras, J. Functional Analysis, 118 (1993), 1-21.

[14] C. Farsi - N. Watling, Abstract characterization of the fixed point subalgebras of the rotation algebra, Canad. J. Math., 46 (1994), 1211-1237. | Zbl

[15] C. Farsi - N. Watling, Symmetrized non-commutative tori, Math. Ann., 296 (1993), 739-741. | fulltext EuDML

[16] C. Farsi - N. Watling, Fixed Point Subalgebras of Rational Higher Dimensional Non-Commutative Tori, Proc. Amer. Math. Soc., 125 (1997), 209-217. | Zbl

[17] N. Riedel, Almost Mathieu operators and rotation $C^*$-algebras, Proc. London Math. Soc., 56 (1988), 281-302.

[18] N. Riedel, On spectral properties of almost Mathieu operators and connections with irrational rotation algebras, Rocky Mount. Jour. Math., 20 (1990), 539-548. | Zbl

[19] N. Riedel, Absence of Cantor spectrum for a class of Schrödinger operators, Bull. AMS, 29 (1993), 85-87. | Zbl

[20] M.A. Rieffel, $C^*$-algebras associated with irrational rotations, Pacific J. Math., 93 (1981), 415-429. | Zbl

[21] M.A. Rieffel, Projective modules over higher dimensional non-commutative tori, Can. J. Math., 40 (1988), 257-338. | Zbl

[22] M.A. Rieffel, Non-commutative tori – A case study of non-commutative differentiable manifolds, Contemporary Mathematics, 105 (1990), 191-211. | Zbl