Adding or removing an element from a pseudo-symmetric numerical semigroup
Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 3, pp. 681-696.

Voir la notice de l'article dans Biblioteca Digitale Italiana di Matematica

Se $S$ è un semigruppo numerico pseudo-simmetrico, se $g$ è il suo numero di Frobenius e se $x$ è un generatore minimo di $S$ allora anche $S \cup \{g\}$, $S \setminus \{g\}$ e $S \cup \{\frac{1}{2}g, g\}$ sono semigruppi numerici. In questo lavoro ci proponiamo di studiare tali costruzioni.
@article{BUMI_2006_8_9B_3_a10,
     author = {Rosales, J. C.},
     title = {Adding or removing an element from a pseudo-symmetric numerical semigroup},
     journal = {Bollettino della Unione matematica italiana},
     pages = {681--696},
     publisher = {mathdoc},
     volume = {Ser. 8, 9B},
     number = {3},
     year = {2006},
     zbl = {1147.20052},
     language = {it},
     url = {https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_3_a10/}
}
TY  - JOUR
AU  - Rosales, J. C.
TI  - Adding or removing an element from a pseudo-symmetric numerical semigroup
JO  - Bollettino della Unione matematica italiana
PY  - 2006
SP  - 681
EP  - 696
VL  - 9B
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_3_a10/
LA  - it
ID  - BUMI_2006_8_9B_3_a10
ER  - 
%0 Journal Article
%A Rosales, J. C.
%T Adding or removing an element from a pseudo-symmetric numerical semigroup
%J Bollettino della Unione matematica italiana
%D 2006
%P 681-696
%V 9B
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_3_a10/
%G it
%F BUMI_2006_8_9B_3_a10
Rosales, J. C. Adding or removing an element from a pseudo-symmetric numerical semigroup. Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 3, pp. 681-696. https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_3_a10/

[1] R. Apery, Sur les branches superlineaires des courbes algebriques, C. R. Acad. Sci. Paris, 222 (1946), 1198-1200. | Zbl

[2] V. Barucci - D. E. Dobbs - M. Fontana, Maximality Properties in Numerical Semigroups and Applications to One-Dimensional Analytically Irreducible Local Domains, Memoirs of the Amer. Math. Soc., 598 (1997). | Zbl

[3] A. Brauer, On a problem of partitions, Amer. J. Math., 64 (1942), 299-312. | Zbl

[4] A. Brauer - J. E. Schockley, On a problem of Frobenius, J. Reine Angew. Math., 211 (1962), 215-220. | fulltext EuDML

[5] R. Fröberg, G. Gottlieb - R. Häggkvist, On numerical semigroups, Semigroup Forum, 35 (1987), 63-83. | fulltext EuDML

[6] R. Gilmer, Commutative semigroup rings, The University of Chicago Press, 1984. | Zbl

[7] J. Herzog, Generators and relations of abelian semigroups and semigroup rings, Manuscripta Math., 3 (1970), 175-193. | fulltext EuDML | Zbl

[8] J. Komeda, Non-Weierstrass numerical semigroups, Semigroup Forum, 57 (1998), 157-185. | Zbl

[9] E. Kunz, The value-semigroup of a one-dimensional Gorenstein ring, Proc. Amer. Math. Soc., 25 (1973), 748-751. | Zbl

[10] S. M. Johnson, A linear diophantine problem, Can. J. Math., 12 (1960), 390-398. | Zbl

[11] J. C. Rosales, Symmetric numerical semigroups with arbitrary multiplicity and embedding dimension, Proc. Amer. Math. Soc., 129 (2001), 2197-2203. | Zbl

[12] J. C. Rosales, Numerical semigroups that differ from a symmetric numerical semigroup in one element, to appear in Algebra Colloquium. | Zbl

[13] J. C. Rosales, P. A. García-Sánchez, Finitely generated commutative monoids, Nova Science Publishers, New York, 1999.

[14] J. C. Rosales - M. B. Branco, Numerical semigroups that can be expressed as an intersection of symmetric numerical semigroups, J. Pure Appl. Algebra, 171 (2002), 303-314. | Zbl

[15] J. C. Rosales - M. B. Branco, Irreducible numerical semigroups with arbitrary multiplicity and embedding dimension, J. Algebra, 264 (2003), 305-315. | Zbl

[16] J. C. Rosales - M. B. Branco, Irreducible numerical semigroups, Pacific J. Math., 209 (2003), 131-143. | Zbl

[17] E. S. Selmer, On a linear diophantine problem of Frobenius, J. Reine Angew. Math., 293/294 (1977), 1-17. | fulltext EuDML | Zbl

[18] J. J. Sylvester, Mathematical questions with their solutions, Educational Times, 41 (1884), 21.