Asymptotic stability of a semigroup generated by randomly connected Poisson driven differential equations
Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 3, pp. 545-566.

Voir la notice de l'article dans Biblioteca Digitale Italiana di Matematica

Si considera l'equazione differenziale stocastica del tipo \begin{equation}\tag{1}dX(t) = a(X(t); \xi(t)) \, dt + \int_\Theta b(X(t); \theta) \mathcal{N}_p(dt; d\theta)\end{equation} per $t \geq 0$ con condizione iniziale $X(0) = x_0$. Diamo condizioni sufficienti per la stabilità delle soluzioni che generano il semigruppo degli operatori di Markov.
@article{BUMI_2006_8_9B_3_a1,
     author = {Horbacz, Katarzyna},
     title = {Asymptotic stability of a semigroup generated by randomly connected {Poisson} driven differential equations},
     journal = {Bollettino della Unione matematica italiana},
     pages = {545--566},
     publisher = {mathdoc},
     volume = {Ser. 8, 9B},
     number = {3},
     year = {2006},
     zbl = {1177.60058},
     mrnumber = {2274111},
     language = {it},
     url = {https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_3_a1/}
}
TY  - JOUR
AU  - Horbacz, Katarzyna
TI  - Asymptotic stability of a semigroup generated by randomly connected Poisson driven differential equations
JO  - Bollettino della Unione matematica italiana
PY  - 2006
SP  - 545
EP  - 566
VL  - 9B
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_3_a1/
LA  - it
ID  - BUMI_2006_8_9B_3_a1
ER  - 
%0 Journal Article
%A Horbacz, Katarzyna
%T Asymptotic stability of a semigroup generated by randomly connected Poisson driven differential equations
%J Bollettino della Unione matematica italiana
%D 2006
%P 545-566
%V 9B
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_3_a1/
%G it
%F BUMI_2006_8_9B_3_a1
Horbacz, Katarzyna. Asymptotic stability of a semigroup generated by randomly connected Poisson driven differential equations. Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 3, pp. 545-566. https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_3_a1/

[1] O.L.V. Costa, Stationary distributions for piecewise-deterministic Markov processes, J. Appl. Prob., 27 (1990), 60-73. | Zbl

[2] M.H.A. Davis, Piecewise-deterministic Markov processes : A general class of nondiffusion stochastic models, J. R. Statist. Soc. B (1984, 46), 353-388. | Zbl

[3] M.H.A. Davis, Markov Models and Optimization, Chapman and Hall, London (1993). | Zbl

[4] O. Diekmann - H.J.A.M. Heijmans - H.R. Thieme, On the stability of the cell size distribution, J. Math. Biol., 19 (1984), 227-248. | Zbl

[5] R. Fortet - B. Mourier, Convergence de la répartition empirique vers la répartition théorétique, Ann. Sci. École. Norm. Sup., 70 (1953), 267-285. | fulltext EuDML | Zbl

[6] U. Frisch, Wave propagation in random media, Probabilistic Methods in Applied Mathematics ed. A.T. Bharucha - Reid, Academic Press 1968.

[7] K. Horbacz, Randomly connected dynamical systems - asymptotic stability, Ann. Polon. Math., 68.1 (1998), 31-50. | fulltext EuDML | Zbl

[8] K. Horbacz, Invariant measures related with randomly connected Poisson driven diferential equations, Ann. Polon. Math., 79.1 (2002), 31-44. | fulltext EuDML | Zbl

[9] K. Horbacz, Randomly connected differential equations with Poisson type perturbations, Nonlinear Studies, 9.1 (2002), 81-98.

[10] K. Horbacz, Random dynamical systems with jumps, J. Appl. Prob., 41 (2004), 890-910. | Zbl

[11] K. Horbacz, J. Myjak - T. Szarek, Stability of random dynamical system on Banach spaces, (to appear). | Zbl

[12] J.B. Keller, Stochastic equations and wave propagation in random media, Proc. Symp. Appl. Math., 16 (1964), 1456-1470.

[13] A. Lasota - M.C. Mackey, Chaos, Fractals and Noise - Stochastic Aspect of Dynamics, Springer-Verlag New York (1994).

[14] A. Lasota - J. Traple, Invariant measures related with Poisson driven stochastic differential equation, Stoch. Proc. and Their Appl. 106.1 (2003), 81-93. | Zbl

[15] A. Lasota - J.A. Yorke, Lower bound technique for Markov operators and iterated function systems, Random and Computational Dynamics, 2 (1994), 41-77. | Zbl

[16] S. Meyn and R Tweedie, Markov Chains and Stochastic Stability, Springer-Verlag Berlin 1993.

[17] J. Traple, Markov semigroup generated by Poisson driven differential equations, Bull. Pol. Ac. Math., 44 (1996), 161-182. | Zbl