Cyclic phenomena for composition operators on weighted Bergman spaces
Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 3, pp. 529-543.

Voir la notice de l'article dans Biblioteca Digitale Italiana di Matematica

In questo lavoro diamo una generalizzazione alla famiglia di Spazi di Bergman con peso $G$, $A^2_G$, di alcuni risultati ottenuti in [4] per lo spazio di Hardy $H^2$. In particolare studiamo il comportamento ciclico e iperciclico, nello spazio $A^2_G$, di operatori di composizione indotti da una funzione olomorfa $\varphi$ del disco unitario $\Delta \subset \mathbb{C}$ in sé.
@article{BUMI_2006_8_9B_3_a0,
     author = {Gori, Anna},
     title = {Cyclic phenomena for composition operators on weighted {Bergman} spaces},
     journal = {Bollettino della Unione matematica italiana},
     pages = {529--543},
     publisher = {mathdoc},
     volume = {Ser. 8, 9B},
     number = {3},
     year = {2006},
     zbl = {1150.47006},
     mrnumber = {2274110},
     language = {it},
     url = {https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_3_a0/}
}
TY  - JOUR
AU  - Gori, Anna
TI  - Cyclic phenomena for composition operators on weighted Bergman spaces
JO  - Bollettino della Unione matematica italiana
PY  - 2006
SP  - 529
EP  - 543
VL  - 9B
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_3_a0/
LA  - it
ID  - BUMI_2006_8_9B_3_a0
ER  - 
%0 Journal Article
%A Gori, Anna
%T Cyclic phenomena for composition operators on weighted Bergman spaces
%J Bollettino della Unione matematica italiana
%D 2006
%P 529-543
%V 9B
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_3_a0/
%G it
%F BUMI_2006_8_9B_3_a0
Gori, Anna. Cyclic phenomena for composition operators on weighted Bergman spaces. Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 3, pp. 529-543. https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_3_a0/

[1] J. Akeroyd - D. Khavinson - H. S. Shapiro, Remarks concerning cyclic vectors in Hardy and Bergman Spaces, Mich. Math. J., 38 (1991), 191-205. | Zbl

[2] J. Akeroyd, Polynomials approximation in the mean with respect to harmonic measure on crescents, Mich. Math. J., 39 (1992), 35-40. | Zbl

[3] P. Bourdon, Density of the polynomials in Bergman spaces, Pacific J. Math., 130 (1987), 215-221. | Zbl

[4] P. Bourdon - H. J. Shapiro, Chiclic phenomena for composition operators, Memoires of the Amer. Math. Soc., 125 (1997), 69-95.

[5] C. Cowen, Iteration and the solution of functional equations for functions analytic in the unit disc, Trans. Amer. Math. Soc., 265 (1981), 69-95. | Zbl

[6] E. A. Gallardo Gutierrez - A. Montes-Rodriguez, The Role of the Spectrum in the Cyclic Behaviour of linear fractional Composition Operators (preprint). | Zbl

[7] T. L. Kriete, Kernel Functions and Composition Operators in Weighted Bergman Spaces, Contemporary Amer. Math. Soc., 213 (1998). | Zbl

[8] B. Maccluer - T. Kriete, Composition Operators on Weighted Bergman Spaces, Indiana Math. J., 41 (1992), 755-788. | Zbl

[9] B. Maccluer - H. J. Shapiro, Angular derivatives and compact composition operators on Hardy and Bergman spaces, Canadian J. Math., 38 (1986), 878-906. | Zbl

[10] S. N. Mergelyan, On the completeness of systems of analytic functions, AMS Transl., 19 (1962), 109-166. | Zbl

[11] H. J. Shapiro, Composition Operators and Classical Function Theory, Springer-Verlag, 1993. | Zbl

[12] A. Shields, Weighted Shift operators and analytic function theory, Topics in Operator Theory, Mathematical Surveys, 13 Amer. Math. Soc, providence R.I (1974).