On the dynamics of infinitely many charged particles with magnetic confinement
Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 2, pp. 371-395.

Voir la notice de l'article dans Biblioteca Digitale Italiana di Matematica

Studiamo l'evoluzione temporale di un sistema di infinite particelle cariche, confinate a muoversi in un conduttore cilindrico illimitato attraverso un campo magnetico esterno e tra loro interagenti mediante un potenziale di tipo Coulomb. Dimostriamo l'esistenza, l'unicità e la quasi-località del moto. Forniamo inoltre alcune stime non banali sul comportamento del sistema per tempi lunghi.
@article{BUMI_2006_8_9B_2_a7,
     author = {Butt\`a, P. and Caprino, S. and Cavallaro, G. and Marchioro, C.},
     title = {On the dynamics of infinitely many charged particles with magnetic confinement},
     journal = {Bollettino della Unione matematica italiana},
     pages = {371--395},
     publisher = {mathdoc},
     volume = {Ser. 8, 9B},
     number = {2},
     year = {2006},
     zbl = {1150.82016},
     language = {it},
     url = {https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_2_a7/}
}
TY  - JOUR
AU  - Buttà, P.
AU  - Caprino, S.
AU  - Cavallaro, G.
AU  - Marchioro, C.
TI  - On the dynamics of infinitely many charged particles with magnetic confinement
JO  - Bollettino della Unione matematica italiana
PY  - 2006
SP  - 371
EP  - 395
VL  - 9B
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_2_a7/
LA  - it
ID  - BUMI_2006_8_9B_2_a7
ER  - 
%0 Journal Article
%A Buttà, P.
%A Caprino, S.
%A Cavallaro, G.
%A Marchioro, C.
%T On the dynamics of infinitely many charged particles with magnetic confinement
%J Bollettino della Unione matematica italiana
%D 2006
%P 371-395
%V 9B
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_2_a7/
%G it
%F BUMI_2006_8_9B_2_a7
Buttà, P.; Caprino, S.; Cavallaro, G.; Marchioro, C. On the dynamics of infinitely many charged particles with magnetic confinement. Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 2, pp. 371-395. https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_2_a7/

[1] R. Alexander, Time evolution for infinitely many hard spheres, Commun. Math. Phys., 49 (1976), 217-232.

[2] C. Bahn - Y.M. Park - H.J. Yoo, Nonequilibrium dynamics of infinite particle systems with infinite range interactions, J. Math. Phys., 40 (1999), 4337-4358. | Zbl

[3] P. Buttà - E. Caglioti - C. Marchioro, On the long time behavior of infinitely extended systems of particles interacting via a Kac potential, J. Stat. Phys., 108 (2002), 317-339. | Zbl

[4] P. Buttà - E. Caglioti - C. Marchioro, On the motion of a charged particle interacting with an infinitely extended system, Commun. Math. Phys., 233 (2003), 545-569. | Zbl

[5] E. Caglioti - C. Marchioro - M. Pulvirenti, Non-equilibrium dynamics of threedimensional infinite particle systems, Commun. Math. Phys., 215 (2000), 25-43. | Zbl

[6] E. Caglioti - C. Marchioro, On the long time behavior of a particle in an infinitely extended system in one dimension, J. Stat. Phys., 106 (2002), 663-680. | Zbl

[7] P. Calderoni - S. Caprino, Time evolution of infinitely many particles: an existence theorem, J. Stat. Phys., 28 (1982), 815-833. | Zbl

[8] R.L. Dobrushin - J. Fritz, Non-equilibrium dynamics of one-dimensional infinite particle systems with a hard-core interaction, Commun. Math. Phys., 55 (1977), 275-292. | Zbl

[9] A. Friedman, Stochastic differential equations and applications, vol. I, Academic Press New York (1975). | Zbl

[10] J. Fritz - R.L. Dobrushin, Non-equilibrium dynamics of two-dimensional infinite particle systems with a singular interaction, Commun. Math. Phys., 57 (1977), 67-81.

[11] O.E. Lanford, Classical Mechanics of one-dimensional systems with infinitely many particles. I An existence theorem, Commun. Math. Phys., 9 (1968), 176-191. | Zbl

[12] O.E. Lanford, Classical Mechanics of one-dimensional systems with infinitely many particles. II Kinetic Theory, Commun. Math. Phys. 11 (1969), 257-292. | Zbl

[13] O.E. Lanford, Time evolution of large classical systems, Moser Ed. Lect. Notes in Phys., Springer 38 (1975). | Zbl

[14] C. Marchioro - A. Pellegrinotti - E. Presutti, Existence of time evolution in $\nu$-dimensional Statistical Mechanics, Commun. Math. Phys., 40 (1975), 175-185.

[15] C. Marchioro - A. Pellegrinotti - M. Pulvirenti, Remarks on the existence of non-equilibrium dynamics, Coll. Math. Soc. Janos Bolyai, Proceedings Esztergom Summer School, 27 (1978), 733-746. | Zbl

[16] C. Marchioro - M. Pulvirenti, Time evolution of infinite one-dimensional Coulomb Systems, J. Stat. Phys., 27 (1982), 809-822.

[17] E. Presutti - M. Pulvirenti - B. Tirozzi, Time evolution of infinite classical systems with singular, long-range, two-body interaction, Commun. Math. Phys., 47 (1976), 81-95.

[18] M. Pulvirenti, On the time evolution of the states of infinitely extended particle systems, J. Stat. Phys., 27 (1982), 693-713. | Zbl

[19] D. Ruelle, Statistical Mechanics. Rigorous Results, W.A. Benjamin, Inc., New York-Amsterdam 1969.

[20] R. Sigmund-Schultze, On non-equilibrium dynamics of multidimensional infinite particle systems in the translation invariant case, Commun. Math. Phys., 100 (1985), 245-265. | Zbl

[21] Y. Sinai, Construction of the dynamics for one-dimensional systems of Statistical Mechanics, Sov. Theor. Math. Phys., 12 (1973), 487-501.

[22] Y. Sinai, The construction of the cluster dynamics of dynamical systems in Statistical Mechanics, Vest. Moskow Univ. Sez. I Math. Mech., 29 (1974), 153-176.