On the dynamics of infinitely many charged particles with magnetic confinement
Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 2, pp. 371-395.

Voir la notice de l'article dans Biblioteca Digitale Italiana di Matematica

We study the time evolution of a system of infinitely many charged particles confined by an external magnetic field in an unbounded cylindrical conductor and mutually interacting via the Coulomb force. We prove the existence, uniqueness and quasi-locality of the motion. Moreover, we give some nontrivial bounds on its long time behavior.
Studiamo l'evoluzione temporale di un sistema di infinite particelle cariche, confinate a muoversi in un conduttore cilindrico illimitato attraverso un campo magnetico esterno e tra loro interagenti mediante un potenziale di tipo Coulomb. Dimostriamo l'esistenza, l'unicità e la quasi-località del moto. Forniamo inoltre alcune stime non banali sul comportamento del sistema per tempi lunghi.
@article{BUMI_2006_8_9B_2_a7,
     author = {Butt\`a, P. and Caprino, S. and Cavallaro, G. and Marchioro, C.},
     title = {On the dynamics of infinitely many charged particles with magnetic confinement},
     journal = {Bollettino della Unione matematica italiana},
     pages = {371--395},
     publisher = {mathdoc},
     volume = {Ser. 8, 9B},
     number = {2},
     year = {2006},
     zbl = {1150.82016},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_2_a7/}
}
TY  - JOUR
AU  - Buttà, P.
AU  - Caprino, S.
AU  - Cavallaro, G.
AU  - Marchioro, C.
TI  - On the dynamics of infinitely many charged particles with magnetic confinement
JO  - Bollettino della Unione matematica italiana
PY  - 2006
SP  - 371
EP  - 395
VL  - 9B
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_2_a7/
LA  - en
ID  - BUMI_2006_8_9B_2_a7
ER  - 
%0 Journal Article
%A Buttà, P.
%A Caprino, S.
%A Cavallaro, G.
%A Marchioro, C.
%T On the dynamics of infinitely many charged particles with magnetic confinement
%J Bollettino della Unione matematica italiana
%D 2006
%P 371-395
%V 9B
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_2_a7/
%G en
%F BUMI_2006_8_9B_2_a7
Buttà, P.; Caprino, S.; Cavallaro, G.; Marchioro, C. On the dynamics of infinitely many charged particles with magnetic confinement. Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 2, pp. 371-395. https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_2_a7/

[1] R. Alexander, Time evolution for infinitely many hard spheres, Commun. Math. Phys., 49 (1976), 217-232.

[2] C. Bahn - Y.M. Park - H.J. Yoo, Nonequilibrium dynamics of infinite particle systems with infinite range interactions, J. Math. Phys., 40 (1999), 4337-4358. | Zbl

[3] P. Buttà - E. Caglioti - C. Marchioro, On the long time behavior of infinitely extended systems of particles interacting via a Kac potential, J. Stat. Phys., 108 (2002), 317-339. | Zbl

[4] P. Buttà - E. Caglioti - C. Marchioro, On the motion of a charged particle interacting with an infinitely extended system, Commun. Math. Phys., 233 (2003), 545-569. | Zbl

[5] E. Caglioti - C. Marchioro - M. Pulvirenti, Non-equilibrium dynamics of threedimensional infinite particle systems, Commun. Math. Phys., 215 (2000), 25-43. | Zbl

[6] E. Caglioti - C. Marchioro, On the long time behavior of a particle in an infinitely extended system in one dimension, J. Stat. Phys., 106 (2002), 663-680. | Zbl

[7] P. Calderoni - S. Caprino, Time evolution of infinitely many particles: an existence theorem, J. Stat. Phys., 28 (1982), 815-833. | Zbl

[8] R.L. Dobrushin - J. Fritz, Non-equilibrium dynamics of one-dimensional infinite particle systems with a hard-core interaction, Commun. Math. Phys., 55 (1977), 275-292. | Zbl

[9] A. Friedman, Stochastic differential equations and applications, vol. I, Academic Press New York (1975). | Zbl

[10] J. Fritz - R.L. Dobrushin, Non-equilibrium dynamics of two-dimensional infinite particle systems with a singular interaction, Commun. Math. Phys., 57 (1977), 67-81.

[11] O.E. Lanford, Classical Mechanics of one-dimensional systems with infinitely many particles. I An existence theorem, Commun. Math. Phys., 9 (1968), 176-191. | Zbl

[12] O.E. Lanford, Classical Mechanics of one-dimensional systems with infinitely many particles. II Kinetic Theory, Commun. Math. Phys. 11 (1969), 257-292. | Zbl

[13] O.E. Lanford, Time evolution of large classical systems, Moser Ed. Lect. Notes in Phys., Springer 38 (1975). | Zbl

[14] C. Marchioro - A. Pellegrinotti - E. Presutti, Existence of time evolution in $\nu$-dimensional Statistical Mechanics, Commun. Math. Phys., 40 (1975), 175-185.

[15] C. Marchioro - A. Pellegrinotti - M. Pulvirenti, Remarks on the existence of non-equilibrium dynamics, Coll. Math. Soc. Janos Bolyai, Proceedings Esztergom Summer School, 27 (1978), 733-746. | Zbl

[16] C. Marchioro - M. Pulvirenti, Time evolution of infinite one-dimensional Coulomb Systems, J. Stat. Phys., 27 (1982), 809-822.

[17] E. Presutti - M. Pulvirenti - B. Tirozzi, Time evolution of infinite classical systems with singular, long-range, two-body interaction, Commun. Math. Phys., 47 (1976), 81-95.

[18] M. Pulvirenti, On the time evolution of the states of infinitely extended particle systems, J. Stat. Phys., 27 (1982), 693-713. | Zbl

[19] D. Ruelle, Statistical Mechanics. Rigorous Results, W.A. Benjamin, Inc., New York-Amsterdam 1969.

[20] R. Sigmund-Schultze, On non-equilibrium dynamics of multidimensional infinite particle systems in the translation invariant case, Commun. Math. Phys., 100 (1985), 245-265. | Zbl

[21] Y. Sinai, Construction of the dynamics for one-dimensional systems of Statistical Mechanics, Sov. Theor. Math. Phys., 12 (1973), 487-501.

[22] Y. Sinai, The construction of the cluster dynamics of dynamical systems in Statistical Mechanics, Vest. Moskow Univ. Sez. I Math. Mech., 29 (1974), 153-176.