On the lower semicontinuity of supremal functionals defined on measures
Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 2, pp. 327-369.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In this paper we consider two particular classes of supremal functionals defined on Radon measures and we find necessary and sufficient conditions for their lower semicontinuity with respect to the weak* convergence. Some applications to the minimization of functionals defined on BV are presented.
In questo lavoro si considerano due particolari classi di funzionali supremali definiti sulle misure di Radon e si determinano alcune condizioni necessarie e sufficienti alla loro semicontinuità rispetto alla convergenza debole*. Vengono successivamente presentate alcune applicazioni di questi risultati alla minimizzazione di opportuni funzionali definiti su BV.
@article{BUMI_2006_8_9B_2_a6,
     author = {Gori, Michele},
     title = {On the lower semicontinuity of supremal functionals defined on measures},
     journal = {Bollettino della Unione matematica italiana},
     pages = {327--369},
     publisher = {mathdoc},
     volume = {Ser. 8, 9B},
     number = {2},
     year = {2006},
     zbl = {1178.49015},
     mrnumber = {2233142},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_2_a6/}
}
TY  - JOUR
AU  - Gori, Michele
TI  - On the lower semicontinuity of supremal functionals defined on measures
JO  - Bollettino della Unione matematica italiana
PY  - 2006
SP  - 327
EP  - 369
VL  - 9B
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_2_a6/
LA  - en
ID  - BUMI_2006_8_9B_2_a6
ER  - 
%0 Journal Article
%A Gori, Michele
%T On the lower semicontinuity of supremal functionals defined on measures
%J Bollettino della Unione matematica italiana
%D 2006
%P 327-369
%V 9B
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_2_a6/
%G en
%F BUMI_2006_8_9B_2_a6
Gori, Michele. On the lower semicontinuity of supremal functionals defined on measures. Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 2, pp. 327-369. https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_2_a6/

[1] E. Acerbi - G. Buttazzo - N. Prinari, The class of functionals which can be represented by a supremum, J. Convex Analysis, 9 (2002), 225-236. | Zbl

[2] R. Alicandro - A. Braides - M. Cicalese, $L^\infty$ energies on discontinuous functions, Preprint.

[3] L. Ambrosio, Existence theory for a new class of variational problems, Arch. Rational Mech. Anal., 111 (1990), 291-322. | Zbl

[4] L. Ambrosio - G. Buttazzo, Weak lower semicontinuous envelope of functions defined on a space of measures, Ann. Mat. pura appl., 150 (1988), 311-340. | Zbl

[5] L. Ambrosio - G. Dal Maso, On the relaxation in $BV(\Omega, \mathbb{R}^m)$ of quasi-convex integrals, J. Func. Anal., 109 (1992), 76-97. | Zbl

[6] L. Ambrosio - N. Fusco - D. Pallara, Functions of bounded variation and free discontinuity problems, Oxford University Press, Inc. New York, 2000. | Zbl

[7] G. Anzellotti - G. Buttazzo - G. Dal Maso, Dirichlet problem for demi-coercive functionals, Nonlinear Anal., 10 (1986), 603-613. | Zbl

[8] G. Aronsson - M.G. Crandall - P. Juutinen, A tour of the theory of absolutely minimizing functions, Bull. Amer. Math. Soc. (N.S.), 41 (2004),no. 4, 439-505. | Zbl

[9] E.N. Barron - R.R. Jensen - C.Y. Wang, Lower semicontinuity of $L^\infty$ functionals, Ann. I. H. Poincaré - AN 18 (2001), 495-517. | fulltext EuDML | Zbl

[10] E.N. Barron - W. Liu, Calculus of variations in $L^\infty$, Appl. Math. Optim., 35 (1997), 237-263. | Zbl

[11] G. Bouchitté, Représentation intégrale de fonctionelles convexes sur un espace de measures, Ann. Univ. Ferrara, 18 (1987), 113-156. | Zbl

[12] G. Bouchitté - G. Buttazzo, New lower semicontinuity results for nonconvex functionals defined on measures, Nonlinear Anal., 15 (1990), 679-692. | Zbl

[13] G. Bouchitté - G. Buttazzo, Integral representation of nonconvex functionals defined on measures, Ann. Inst. Henri Poincaré, 9 (1992), 101-117. | fulltext EuDML | Zbl

[14] G. Bouchitté - G. Buttazzo, Relaxation for a class of nonconvex functionals defined on measures, Ann. Inst. Henri Poincaré, 10 (1993), 345-361. | fulltext EuDML | Zbl

[15] G. Bouchitté - M. Valadier, Integral representation of convex functionals on a space of measures, J. funct. Analysis, 80 (1988), 398-420. | Zbl

[16] G. Buttazzo, Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations, Pitman Res. Notes Math. Ser., 207, Longman, Harlow (1989).

[17] E. De Giorgi - L. Ambrosio, Un nuovo tipo di funzionale del calcolo delle variazioni, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Natur. Rend., 82 (1988), 199-210. | fulltext bdim | fulltext EuDML

[18] E. De Giorgi - L. Ambrosio - G. Buttazzo, Integral representation and relaxation for functionals defined on measures, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Natur. Rend., 81 (1987), 7-13. | fulltext bdim | fulltext EuDML | Zbl

[19] L.C. Evans - R.F. Gariepy, Measure theory and fine properties of functions, Studies in advanced mathematics, CRC Press, Boca Raton, Florida, 1992.

[20] E. Giusti, Minimal surfaces and functions of bounded variation, Birkhäuser, Basel, 1984. | Zbl

[21] C. Goffman - J. Serrin, Sublinear functions of measure and variational integrals, Duke Math J., 31 (1964), 159-178. | Zbl

[22] M. Gori, On the definition on BV of a supremal functional, Preprint n. 2.449.1417 (October 2002) Università di Pisa.

[23] M. Gori - F. Maggi, On the lower semicontinuity of supremal functionals, ESAIM: COCV., 9 (2003), 135-143. | fulltext EuDML | Zbl

[24] M. Gori - F. Maggi, The common root of the geometric conditions in Serrin's lower semicontinuity theorem, to appear in Annali Mat. pura appl. | Zbl

[25] R. Jensen, Uniqueness of Lipchitz extensions: minimizing the sup norm of the gradient, Arch. Rational Mech. Anal., 123 (1993), 51-74. | Zbl

[26] R.T. Rockafellar - R.J-B. Wets, Variational Analysis, Die Grundlehren der mathematischen Wissenschaften 317, Springer-Verlag, Berlin, 1998.

[27] J. Serrin, On the definition and properties of certain variational integrals, Trans. Amer. Math. Soc., 101 (1961), 139-167. | Zbl