Voir la notice de l'article dans Biblioteca Digitale Italiana di Matematica
@article{BUMI_2006_8_9B_2_a3, author = {Berti, Valeria}, title = {Existence and uniqueness for an integro-differential equation with singular kernel}, journal = {Bollettino della Unione matematica italiana}, pages = {299--309}, publisher = {mathdoc}, volume = {Ser. 8, 9B}, number = {2}, year = {2006}, zbl = {1178.45011}, language = {it}, url = {https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_2_a3/} }
TY - JOUR AU - Berti, Valeria TI - Existence and uniqueness for an integro-differential equation with singular kernel JO - Bollettino della Unione matematica italiana PY - 2006 SP - 299 EP - 309 VL - 9B IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_2_a3/ LA - it ID - BUMI_2006_8_9B_2_a3 ER -
%0 Journal Article %A Berti, Valeria %T Existence and uniqueness for an integro-differential equation with singular kernel %J Bollettino della Unione matematica italiana %D 2006 %P 299-309 %V 9B %N 2 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_2_a3/ %G it %F BUMI_2006_8_9B_2_a3
Berti, Valeria. Existence and uniqueness for an integro-differential equation with singular kernel. Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 2, pp. 299-309. https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_2_a3/
[1] On the existence and asymptotic stability of solutions for linearly viscoelastic solids, Arch. Rational Mech. Anal., 116 (2) (1991), 139-152. | Zbl
- ,[2] The domain of dependence inequality and asymptotic stability for a viscoelastic solid, Nonlinear Oscil., 1 (1998), 117-133. | Zbl
- ,[3] Mathematical problems in linear viscoelasticity, SIAM, Philadelphia, 1992. | Zbl
- ,[4] Regularity and stability for a viscoelastic material with a singular memory kernel, J. Elasticity, 37 (2) (1995), 139-156. | Zbl
,[5] Wave propagation in media with singular memory, Math. Comput. Modelling, 34 (12-13) (2001), 1329-1421. | Zbl
,[6] On wave propagation in linear viscoelasticity, Quart. Appl. Math., 43 (2) (1985), 237-254. | Zbl
- ,[7] The boundary value problem of mathematical physics, Springer, New York, 1985. | Zbl
,[8] Mathematical problems in viscoelasticity, Longman Scientific & Technical, John Wiley & Sons, New York, 1987.
- - ,[9] Hilbert space methods for differential equations, Pitman, London, 1977. | Zbl
,[10] Basic linear partial differential equations, Acad. press, New York, 1975. | Zbl
,