A Characterization of ω-Limit Sets for Continuous Flows on Surfaces
Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 2, pp. 515-521.

Voir la notice de l'article dans Biblioteca Digitale Italiana di Matematica

An explicit topological description of ω-limit sets of continuous flows on compact surfaces without boundary is given. Some of the results can be extended to manifolds of larger dimensions.
Si dà una descrizione topologica esplicita degli insiemi ω-limite dei flussi continui in superfici compatte senza frontiera. Alcuni risultati si possono estendere a varietà di dimensione maggiore.
@article{BUMI_2006_8_9B_2_a13,
     author = {Jim\'enez L\'opez, V{\'\i}ctor and Soler L\'opez, Gabriel},
     title = {A {Characterization} of $\omega${-Limit} {Sets} for {Continuous} {Flows} on {Surfaces}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {515--521},
     publisher = {mathdoc},
     volume = {Ser. 8, 9B},
     number = {2},
     year = {2006},
     zbl = {1178.37015},
     mrnumber = {2233149},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_2_a13/}
}
TY  - JOUR
AU  - Jiménez López, Víctor
AU  - Soler López, Gabriel
TI  - A Characterization of $\omega$-Limit Sets for Continuous Flows on Surfaces
JO  - Bollettino della Unione matematica italiana
PY  - 2006
SP  - 515
EP  - 521
VL  - 9B
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_2_a13/
LA  - en
ID  - BUMI_2006_8_9B_2_a13
ER  - 
%0 Journal Article
%A Jiménez López, Víctor
%A Soler López, Gabriel
%T A Characterization of $\omega$-Limit Sets for Continuous Flows on Surfaces
%J Bollettino della Unione matematica italiana
%D 2006
%P 515-521
%V 9B
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_2_a13/
%G en
%F BUMI_2006_8_9B_2_a13
Jiménez López, Víctor; Soler López, Gabriel. A Characterization of $\omega$-Limit Sets for Continuous Flows on Surfaces. Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 2, pp. 515-521. https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_2_a13/

[1] D. V. Anosov, Flows on closed surfaces and behavior of trajectories lifted to the universal covering plane, J. Dynam. Control Systems, 1 (1995), 125-138. | Zbl

[2] F. Balibrea - V. Jiménez López, A characterization of the ω-limit sets of planar continuous dynamical sistems, J. Differential Equations, 145 (1996), 469-488.

[3] V. Jiménez López - G. Soler López, A topological characterization of ω-limit sets for continuous flows on the projective plane, Discrete Contin. Dynam. Systems, Added Volume (2001), 254-258. | Zbl

[4] V. Jiménez López - G. Soler López, A characterization of ω-limit sets of nonrecurrent orbits in $\mathbb{S}^n$, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 1727-1732. | Zbl

[5] V. Jiménez López - G. Soler López, Accumulation points of nonrecurrent orbits of surface flows, Topology Appl., 137 (2004), 187-194.

[6] V. Jiménez López - G. Soler López, Transitive flows on manifolds, Rev. Mat. Iberoamericana, 20 (2004), 107-130. | fulltext EuDML

[7] R. A. Smith - S. Thomas, Some examples of transitive smooth flows on differentiable manifolds, J. London Math. Soc., 37 (1988), 552-568. | Zbl

[8] R. A. Smith - S. Thomas, Transitive flows on two-dimensional manifolds, J. London Math. Soc., 37 (1988), 569-576. | Zbl

[9] G. Soler López, Accumulation points of flows on the Klein bottle, Discrete Contin. Dynam. Systems, 9 (2003), 497-503.

[10] G. Soler López, ω-limit sets from nonrecurrent points of flows on manifold, Topology Appl., 153 (2005), 963-974. | Zbl

[11] G. Soler López, Caracterización topólogica de conjuntos ω-límite sobre variedades, PhD. Thesis, Universidad de Murcia, 2005.

[12] R. E. Vinograd, On the limiting behavior of an unbounded integral curve, Moskov. Gos. Univ. Uč. Zap., 155, Mat. 5 (1952), 94-136 (in Russian).