Voir la notice de l'article dans Biblioteca Digitale Italiana di Matematica
@article{BUMI_2006_8_9B_2_a13, author = {Jim\'enez L\'opez, V{\'\i}ctor and Soler L\'opez, Gabriel}, title = {A {Characterization} of $\omega${-Limit} {Sets} for {Continuous} {Flows} on {Surfaces}}, journal = {Bollettino della Unione matematica italiana}, pages = {515--521}, publisher = {mathdoc}, volume = {Ser. 8, 9B}, number = {2}, year = {2006}, zbl = {1178.37015}, mrnumber = {2233149}, language = {it}, url = {https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_2_a13/} }
TY - JOUR AU - Jiménez López, Víctor AU - Soler López, Gabriel TI - A Characterization of $\omega$-Limit Sets for Continuous Flows on Surfaces JO - Bollettino della Unione matematica italiana PY - 2006 SP - 515 EP - 521 VL - 9B IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_2_a13/ LA - it ID - BUMI_2006_8_9B_2_a13 ER -
%0 Journal Article %A Jiménez López, Víctor %A Soler López, Gabriel %T A Characterization of $\omega$-Limit Sets for Continuous Flows on Surfaces %J Bollettino della Unione matematica italiana %D 2006 %P 515-521 %V 9B %N 2 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_2_a13/ %G it %F BUMI_2006_8_9B_2_a13
Jiménez López, Víctor; Soler López, Gabriel. A Characterization of $\omega$-Limit Sets for Continuous Flows on Surfaces. Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 2, pp. 515-521. https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_2_a13/
[1] Flows on closed surfaces and behavior of trajectories lifted to the universal covering plane, J. Dynam. Control Systems, 1 (1995), 125-138. | Zbl
,[2] A characterization of the ω-limit sets of planar continuous dynamical sistems, J. Differential Equations, 145 (1996), 469-488.
- ,[3] A topological characterization of ω-limit sets for continuous flows on the projective plane, Discrete Contin. Dynam. Systems, Added Volume (2001), 254-258. | Zbl
- ,[4] A characterization of ω-limit sets of nonrecurrent orbits in $\mathbb{S}^n$, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 1727-1732. | Zbl
- ,[5] Accumulation points of nonrecurrent orbits of surface flows, Topology Appl., 137 (2004), 187-194.
- ,[6] Transitive flows on manifolds, Rev. Mat. Iberoamericana, 20 (2004), 107-130. | fulltext EuDML
- ,[7] Some examples of transitive smooth flows on differentiable manifolds, J. London Math. Soc., 37 (1988), 552-568. | Zbl
- ,[8] Transitive flows on two-dimensional manifolds, J. London Math. Soc., 37 (1988), 569-576. | Zbl
- ,[9] Accumulation points of flows on the Klein bottle, Discrete Contin. Dynam. Systems, 9 (2003), 497-503.
,[10] ω-limit sets from nonrecurrent points of flows on manifold, Topology Appl., 153 (2005), 963-974. | Zbl
,[11] Caracterización topólogica de conjuntos ω-límite sobre variedades, PhD. Thesis, Universidad de Murcia, 2005.
,[12] On the limiting behavior of an unbounded integral curve, Moskov. Gos. Univ. Uč. Zap., 155, Mat. 5 (1952), 94-136 (in Russian).
,