A Characterization of $\omega$-Limit Sets for Continuous Flows on Surfaces
Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 2, pp. 515-521.

Voir la notice de l'article dans Biblioteca Digitale Italiana di Matematica

Si dà una descrizione topologica esplicita degli insiemi ω-limite dei flussi continui in superfici compatte senza frontiera. Alcuni risultati si possono estendere a varietà di dimensione maggiore.
@article{BUMI_2006_8_9B_2_a13,
     author = {Jim\'enez L\'opez, V{\'\i}ctor and Soler L\'opez, Gabriel},
     title = {A {Characterization} of $\omega${-Limit} {Sets} for {Continuous} {Flows} on {Surfaces}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {515--521},
     publisher = {mathdoc},
     volume = {Ser. 8, 9B},
     number = {2},
     year = {2006},
     zbl = {1178.37015},
     mrnumber = {2233149},
     language = {it},
     url = {https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_2_a13/}
}
TY  - JOUR
AU  - Jiménez López, Víctor
AU  - Soler López, Gabriel
TI  - A Characterization of $\omega$-Limit Sets for Continuous Flows on Surfaces
JO  - Bollettino della Unione matematica italiana
PY  - 2006
SP  - 515
EP  - 521
VL  - 9B
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_2_a13/
LA  - it
ID  - BUMI_2006_8_9B_2_a13
ER  - 
%0 Journal Article
%A Jiménez López, Víctor
%A Soler López, Gabriel
%T A Characterization of $\omega$-Limit Sets for Continuous Flows on Surfaces
%J Bollettino della Unione matematica italiana
%D 2006
%P 515-521
%V 9B
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_2_a13/
%G it
%F BUMI_2006_8_9B_2_a13
Jiménez López, Víctor; Soler López, Gabriel. A Characterization of $\omega$-Limit Sets for Continuous Flows on Surfaces. Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 2, pp. 515-521. https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_2_a13/

[1] D. V. Anosov, Flows on closed surfaces and behavior of trajectories lifted to the universal covering plane, J. Dynam. Control Systems, 1 (1995), 125-138. | Zbl

[2] F. Balibrea - V. Jiménez López, A characterization of the ω-limit sets of planar continuous dynamical sistems, J. Differential Equations, 145 (1996), 469-488.

[3] V. Jiménez López - G. Soler López, A topological characterization of ω-limit sets for continuous flows on the projective plane, Discrete Contin. Dynam. Systems, Added Volume (2001), 254-258. | Zbl

[4] V. Jiménez López - G. Soler López, A characterization of ω-limit sets of nonrecurrent orbits in $\mathbb{S}^n$, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 1727-1732. | Zbl

[5] V. Jiménez López - G. Soler López, Accumulation points of nonrecurrent orbits of surface flows, Topology Appl., 137 (2004), 187-194.

[6] V. Jiménez López - G. Soler López, Transitive flows on manifolds, Rev. Mat. Iberoamericana, 20 (2004), 107-130. | fulltext EuDML

[7] R. A. Smith - S. Thomas, Some examples of transitive smooth flows on differentiable manifolds, J. London Math. Soc., 37 (1988), 552-568. | Zbl

[8] R. A. Smith - S. Thomas, Transitive flows on two-dimensional manifolds, J. London Math. Soc., 37 (1988), 569-576. | Zbl

[9] G. Soler López, Accumulation points of flows on the Klein bottle, Discrete Contin. Dynam. Systems, 9 (2003), 497-503.

[10] G. Soler López, ω-limit sets from nonrecurrent points of flows on manifold, Topology Appl., 153 (2005), 963-974. | Zbl

[11] G. Soler López, Caracterización topólogica de conjuntos ω-límite sobre variedades, PhD. Thesis, Universidad de Murcia, 2005.

[12] R. E. Vinograd, On the limiting behavior of an unbounded integral curve, Moskov. Gos. Univ. Uč. Zap., 155, Mat. 5 (1952), 94-136 (in Russian).