Voir la notice de l'article dans Biblioteca Digitale Italiana di Matematica
@article{BUMI_2006_8_9B_2_a11, author = {Di Fazio, Giuseppe and Zamboni, Pietro}, title = {Local regularity of solutions to quasilinear subelliptic equations in {Carnot} {Caratheodory} spaces}, journal = {Bollettino della Unione matematica italiana}, pages = {485--504}, publisher = {mathdoc}, volume = {Ser. 8, 9B}, number = {2}, year = {2006}, zbl = {1178.35163}, mrnumber = {2233147}, language = {it}, url = {https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_2_a11/} }
TY - JOUR AU - Di Fazio, Giuseppe AU - Zamboni, Pietro TI - Local regularity of solutions to quasilinear subelliptic equations in Carnot Caratheodory spaces JO - Bollettino della Unione matematica italiana PY - 2006 SP - 485 EP - 504 VL - 9B IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_2_a11/ LA - it ID - BUMI_2006_8_9B_2_a11 ER -
%0 Journal Article %A Di Fazio, Giuseppe %A Zamboni, Pietro %T Local regularity of solutions to quasilinear subelliptic equations in Carnot Caratheodory spaces %J Bollettino della Unione matematica italiana %D 2006 %P 485-504 %V 9B %N 2 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_2_a11/ %G it %F BUMI_2006_8_9B_2_a11
Di Fazio, Giuseppe; Zamboni, Pietro. Local regularity of solutions to quasilinear subelliptic equations in Carnot Caratheodory spaces. Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 2, pp. 485-504. https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_2_a11/
[1] Inequalities of John Nirenberg type in doubling spaces, J. Anal. Math., 79 (1999), 215-240. | fulltext (doi) | MR | Zbl
,[2] An embedding theorem and the Harnack inequality for nonlinear subelliptic equations, Comm. P.D.E., 18 (1993), 1765-1794. | fulltext (doi) | MR | Zbl
- - ,[3] Regularity for solutions of quasilinear elliptic equations under minimal assumptions, Potential Analysis, 4 (1995), 325-334. | fulltext (doi) | MR | Zbl
,[4] Harnack's inequality for Schrödinger operators and continuity of solutions, Proc. A.M.S., 98 (1986), 415-425. | fulltext (doi) | MR | Zbl
- - ,[5] A Fefferman-Phong type inequality and applications to quasilinear subelliptic equations, Potential Analysis, 115 (1999), 387-413. | fulltext (doi) | MR | Zbl
,[6] Trace inequalities for Carnot-Caratheodory spaces and applications, Ann. Scuola Norm. Sup. Pisa, 4 (1998), 195-252. | fulltext EuDML | MR | Zbl
- - ,[7] A Fefferman-Poincaré type inequality for Carnot-Carathéodory vector fields, Proc. A.M.S., 130 (2002), 2655-2660. | fulltext (doi) | MR | Zbl
- ,[8] Hölder continuity for quasilinear subelliptic equations in Carnot Caratheodory spaces, Math. Nachr. 272 (2004), 3-10. | fulltext (doi) | MR | Zbl
-[9] Linear and quasilinear elliptic equations, Academic Press (1968).
- ,[10] Sharp forms of Estimates for Subsolutions and Supersolutions of Quasilinear Elliptic Equations Involving Measures, Comm. P.D.E., 18 (1993), 1191-1212. | fulltext (doi) | MR | Zbl
,[11] Local regularity of solutions to quasilinear elliptic equations with general structure, Communications in Applied Analysis, 3 (1999), 131-147. | MR | Zbl
- ,[12] Quasilinear equations and Spaces of Campanato-Morrey type, Comm. P.D.E., 16 (1991), 1155-1182. | fulltext (doi) | MR | Zbl
,[13] Local behavior of solutions of quasilinear elliptic equations with general structure, Trans. A. M. S., 319 (1990), 747-764. | fulltext (doi) | MR | Zbl
- ,[14] Local behavior of solutions of quasilinear equations, Acta Math., 111 (1964), 247-302. | fulltext (doi) | MR | Zbl
,[15] Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities, Acta Math., 189, n. 1 (2002), 79-142. | fulltext (doi) | MR | Zbl
- ,[16] Harnack's inequality for quasilinear elliptic equations with coefficients in Morrey spaces, Rend. Sem. Mat. Univ. Padova, 89 (1993), 87-96. | fulltext EuDML | MR | Zbl
,[17] Local boundedness of solutions of quasilinear elliptic equations with coefficients in Morrey spaces, Boll. Un. Mat. It., 8-B (1994), 985-997. | MR | Zbl
,[18] Local behavior of solutions of quasilinear elliptic equations with coefficients in Morrey Spaces, Rendiconti di Matematica, Serie VII, 15 (1995), 251-262. | MR | Zbl
,[19] Unique continuation for non-negative solutions of quasilinear elliptic equations, Bull. Austral. Math. Soc., 64 (2001), 149-156. | fulltext (doi) | MR | Zbl
,[20] The Harnack inequality for quasilinear elliptic equations under minimal assumptions, Manuscripta Math., 102 (2000), 311-323. | fulltext (doi) | MR | Zbl