Existence and nonexistence results for quasilinear elliptic equations involving the p-Laplacian
Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 2, pp. 445-484.

Voir la notice de l'article dans Biblioteca Digitale Italiana di Matematica

The paper deals with the study of a quasilinear elliptic equation involving the p-laplacian with a Hardy-type singular potential and a critical nonlinearity. Existence and nonexistence results are first proved for the equation with a concave singular term. Then we study the critical case related to Hardy inequality, providing a description of the behavior of radial solutions of the limiting problem and obtaining existence and multiplicity results for perturbed problems through variational and topological arguments.
L’articolo riguarda lo studio di un’equazione ellittica quasi-lineare con il p-laplaciano, caratterizzata dalla presenza di un termine singolare di tipo Hardy ed una nonlinearità critica. Si dimostrano dapprima risultati di esistenza e non esistenza per l’equazione con un termine singolare concavo. Quindi si passa a studiare il caso critico legato alla disuguaglianza di Hardy, fornendo una descrizione del comportamento delle soluzioni radiali del problema limite e ottenendo risultati di esistenza e molteplicità mediante metodi variazionali e topologici.
@article{BUMI_2006_8_9B_2_a10,
     author = {Abdellaoui, Boumediene and Felli, Veronica and Peral, Ireneo},
     title = {Existence and nonexistence results for quasilinear elliptic equations involving the $p${-Laplacian}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {445--484},
     publisher = {mathdoc},
     volume = {Ser. 8, 9B},
     number = {2},
     year = {2006},
     zbl = {1118.35010},
     mrnumber = {1695021},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_2_a10/}
}
TY  - JOUR
AU  - Abdellaoui, Boumediene
AU  - Felli, Veronica
AU  - Peral, Ireneo
TI  - Existence and nonexistence results for quasilinear elliptic equations involving the $p$-Laplacian
JO  - Bollettino della Unione matematica italiana
PY  - 2006
SP  - 445
EP  - 484
VL  - 9B
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_2_a10/
LA  - en
ID  - BUMI_2006_8_9B_2_a10
ER  - 
%0 Journal Article
%A Abdellaoui, Boumediene
%A Felli, Veronica
%A Peral, Ireneo
%T Existence and nonexistence results for quasilinear elliptic equations involving the $p$-Laplacian
%J Bollettino della Unione matematica italiana
%D 2006
%P 445-484
%V 9B
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_2_a10/
%G en
%F BUMI_2006_8_9B_2_a10
Abdellaoui, Boumediene; Felli, Veronica; Peral, Ireneo. Existence and nonexistence results for quasilinear elliptic equations involving the $p$-Laplacian. Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 2, pp. 445-484. https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_2_a10/

[1] B. Abdellaoui - V. Felli - I. Peral, Existence and multiplicity for perturbations of an equation involving Hardy inequality and critical Sobolev exponent in the whole $\mathbb{R}^N$, Adv. Diff. Equations, 9 (2004), 481-508. | Zbl

[2] B. Abdellaoui - I. Peral, Existence and nonexistence results for quasilinear elliptic equations involving the p-laplacian, Ann. Mat. Pura. Applicata, 182 (2003), 247-270. | Zbl

[3] W. Allegretto - Yin Xi Huang, A Picone’s identity for the p-Laplacian and applications, Nonlinear. Anal. TMA., 32, no. 7 (1998), 819-830. | Zbl

[4] A. Ambrosetti, Critical points and nonlinear variational problems, Mém. Soc. Math. France (N.S.), no. 49 (1992). | fulltext EuDML | Zbl

[5] A. Ambrosetti - H. Brezis - G. Cerami, Combined Effects of Concave and Convex Nonlinearities in some Elliptic Problems, Journal of Functional Anal., 122, no. 2 (1994), 519-543. | Zbl

[6] A. Ambrosetti - J. Garcia Azorero - I. Peral, Elliptic variational problems in $\mathbb{R}^N$ with critical growth, J. Diff. Equations, 168, no. 1 (2000), 10-32. | Zbl

[7] H. Brezis - X. Cabré, Some simple PDE’s without solution, Boll. Unione. Mat. Ital. Sez. B, 8, no. 1 (1998), 223-262. | fulltext bdim | fulltext EuDML

[8] J. Brothers - W. Ziemer, Minimal rearrangements of Sobolev functions, Acta Univ. Carolin. Math. Phys. 28, no. 2 (1987), 13-24. | fulltext EuDML | Zbl

[9] D. Cao - J. Chabrowski, Multiple solutions of nonhomogeneous elliptic equation with critical nonlinearity, Differential Integral Equations, 10, no. 5 (1997), 797-814. | Zbl

[10] B. Franchi - E. Lanconelli - J. Serrin, Existence and uniqueness of nonnegative solutions of quasilinear equations in $\mathbb{R}^n$, Adv. Math., 118, no. 2 (1996), 177-243. | Zbl

[11] J. García Azorero - E. Montefusco - I. Peral, Bifurcation for the p-laplacian in $\mathbb{R}^N$, Adv. Differential Equations, 5, no. 4-6 (2000), 435-464. | Zbl

[12] J. García Azorero - I. Peral, Hardy Inequalities and some critical elliptic and parabolic problems, J. Diff. Eq., 144 (1998), 441-476. | Zbl

[13] J. García Azorero - I. Peral, Multiplicity of solutions for elliptic problems with critical exponent or with a non-symmetric term, Trans. Amer. Math. Soc., 323, no. 2 (1991), 877-895. | Zbl

[14] N. Ghoussoub - C. Yuan, Multiple solution for Quasi-linear PDEs involving the critical Sobolev and Hardy exponents, Trans. Amer. Math. Soc., 352, no. 12 (2000), 5703-5743. | DOI | MR | Zbl

[15] P. L. Lions, The concentration-compactness principle in the calculus of variations. The limit case, part 1, Rev. Matemática Iberoamericana, 1, no. 1 (1985), 541-597. 484 | fulltext EuDML | DOI | MR

[16] P. L. Lions, The concentration-compactness principle in the calculus of variations. The limit case, part 2, Rev. Matemática Iberoamericana, 1, no. 2 (1985), 45-121. | fulltext EuDML | DOI | MR | Zbl

[17] R. Musina, Multiple positive solutions of a scalar field equation in $\mathbb{R}^N$, Top. Methods Nonlinear Anal., 7 (1996), 171-186. | DOI | MR | Zbl

[18] I. Peral, Some results on Quasilinear Elliptic Equations: Growth versus Shape, in Proceedings of the Second School of Nonlinear Functional Analysis and Applications to Differential Equations, I.C.T.P. Trieste, Italy, A. Ambrosetti and it alter editors. World Scientific, 1998. | MR

[19] M. Picone, Sui valori eccezionali di un parametro da cui dipende una equazione differenziale lineare ordinaria del secondo ordine, Ann. Scuola. Norm. Pisa., 11 (1910), 1-144. | fulltext EuDML | MR | Zbl

[20] G. Polya - G. Szego, Isoperimetric inequalities in mathematical physics, Gosudarstv. Izdat. Fiz. Mat., Moscow 1962. | MR | Zbl

[21] D. Smets, Nonlinear Schrödinger equations with Hardy potential and critical nonlinearities, Trans. AMS, to appear. | DOI | MR

[22] J. Simon, Regularité de la solution d’une equation non lineaire dans $\mathbb{R}^N$, Lectures Notes in Math, no. 665, P. Benilan editor, Springer Verlag, 1978. | MR

[23] G. Tarantello, On nonhomogeneous elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire. 9, no. 3 (1992), 281-304. | fulltext EuDML | DOI | MR | Zbl

[24] P. Tolksdorf, Regularity for more general class of quasilinear elliptic equations, J. Diff. Eq., 51 (1984), 126-150. | DOI | MR | Zbl

[25] S. Terracini, On positive entire solutions to a class of equations with singular coefficient and critical exponent, Adv. Diff. Equ., 1, no. 2 (1996), 241-264. | MR | Zbl

[26] J. L. Vázquez, A Strong Maximum Principle for Some Quasilinear Elliptic Equations, Applied Math. and Optimization., 12, no. 3 (1984), 191-202. | DOI | MR

[27] M. Willem, Minimax theorems, Progress in Nonlinear Differential Equations and their Applications, 24, Birkhäuser Boston, Inc., Boston, MA, 1996. | DOI | MR