Existence and nonexistence results for quasilinear elliptic equations involving the $p$-Laplacian
Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 2, pp. 445-484.

Voir la notice de l'article dans Biblioteca Digitale Italiana di Matematica

L’articolo riguarda lo studio di un’equazione ellittica quasi-lineare con il p-laplaciano, caratterizzata dalla presenza di un termine singolare di tipo Hardy ed una nonlinearità critica. Si dimostrano dapprima risultati di esistenza e non esistenza per l’equazione con un termine singolare concavo. Quindi si passa a studiare il caso critico legato alla disuguaglianza di Hardy, fornendo una descrizione del comportamento delle soluzioni radiali del problema limite e ottenendo risultati di esistenza e molteplicità mediante metodi variazionali e topologici.
@article{BUMI_2006_8_9B_2_a10,
     author = {Abdellaoui, Boumediene and Felli, Veronica and Peral, Ireneo},
     title = {Existence and nonexistence results for quasilinear elliptic equations involving the $p${-Laplacian}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {445--484},
     publisher = {mathdoc},
     volume = {Ser. 8, 9B},
     number = {2},
     year = {2006},
     zbl = {1118.35010},
     mrnumber = {1695021},
     language = {it},
     url = {https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_2_a10/}
}
TY  - JOUR
AU  - Abdellaoui, Boumediene
AU  - Felli, Veronica
AU  - Peral, Ireneo
TI  - Existence and nonexistence results for quasilinear elliptic equations involving the $p$-Laplacian
JO  - Bollettino della Unione matematica italiana
PY  - 2006
SP  - 445
EP  - 484
VL  - 9B
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_2_a10/
LA  - it
ID  - BUMI_2006_8_9B_2_a10
ER  - 
%0 Journal Article
%A Abdellaoui, Boumediene
%A Felli, Veronica
%A Peral, Ireneo
%T Existence and nonexistence results for quasilinear elliptic equations involving the $p$-Laplacian
%J Bollettino della Unione matematica italiana
%D 2006
%P 445-484
%V 9B
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_2_a10/
%G it
%F BUMI_2006_8_9B_2_a10
Abdellaoui, Boumediene; Felli, Veronica; Peral, Ireneo. Existence and nonexistence results for quasilinear elliptic equations involving the $p$-Laplacian. Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 2, pp. 445-484. https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_2_a10/

[1] B. Abdellaoui - V. Felli - I. Peral, Existence and multiplicity for perturbations of an equation involving Hardy inequality and critical Sobolev exponent in the whole $\mathbb{R}^N$, Adv. Diff. Equations, 9 (2004), 481-508. | Zbl

[2] B. Abdellaoui - I. Peral, Existence and nonexistence results for quasilinear elliptic equations involving the p-laplacian, Ann. Mat. Pura. Applicata, 182 (2003), 247-270. | Zbl

[3] W. Allegretto - Yin Xi Huang, A Picone’s identity for the p-Laplacian and applications, Nonlinear. Anal. TMA., 32, no. 7 (1998), 819-830. | Zbl

[4] A. Ambrosetti, Critical points and nonlinear variational problems, Mém. Soc. Math. France (N.S.), no. 49 (1992). | fulltext EuDML | Zbl

[5] A. Ambrosetti - H. Brezis - G. Cerami, Combined Effects of Concave and Convex Nonlinearities in some Elliptic Problems, Journal of Functional Anal., 122, no. 2 (1994), 519-543. | Zbl

[6] A. Ambrosetti - J. Garcia Azorero - I. Peral, Elliptic variational problems in $\mathbb{R}^N$ with critical growth, J. Diff. Equations, 168, no. 1 (2000), 10-32. | Zbl

[7] H. Brezis - X. Cabré, Some simple PDE’s without solution, Boll. Unione. Mat. Ital. Sez. B, 8, no. 1 (1998), 223-262. | fulltext bdim | fulltext EuDML

[8] J. Brothers - W. Ziemer, Minimal rearrangements of Sobolev functions, Acta Univ. Carolin. Math. Phys. 28, no. 2 (1987), 13-24. | fulltext EuDML | Zbl

[9] D. Cao - J. Chabrowski, Multiple solutions of nonhomogeneous elliptic equation with critical nonlinearity, Differential Integral Equations, 10, no. 5 (1997), 797-814. | Zbl

[10] B. Franchi - E. Lanconelli - J. Serrin, Existence and uniqueness of nonnegative solutions of quasilinear equations in $\mathbb{R}^n$, Adv. Math., 118, no. 2 (1996), 177-243. | Zbl

[11] J. García Azorero - E. Montefusco - I. Peral, Bifurcation for the p-laplacian in $\mathbb{R}^N$, Adv. Differential Equations, 5, no. 4-6 (2000), 435-464. | Zbl

[12] J. García Azorero - I. Peral, Hardy Inequalities and some critical elliptic and parabolic problems, J. Diff. Eq., 144 (1998), 441-476. | Zbl

[13] J. García Azorero - I. Peral, Multiplicity of solutions for elliptic problems with critical exponent or with a non-symmetric term, Trans. Amer. Math. Soc., 323, no. 2 (1991), 877-895. | Zbl

[14] N. Ghoussoub - C. Yuan, Multiple solution for Quasi-linear PDEs involving the critical Sobolev and Hardy exponents, Trans. Amer. Math. Soc., 352, no. 12 (2000), 5703-5743. | fulltext (doi) | MR | Zbl

[15] P. L. Lions, The concentration-compactness principle in the calculus of variations. The limit case, part 1, Rev. Matemática Iberoamericana, 1, no. 1 (1985), 541-597. 484 | fulltext EuDML | fulltext (doi) | MR

[16] P. L. Lions, The concentration-compactness principle in the calculus of variations. The limit case, part 2, Rev. Matemática Iberoamericana, 1, no. 2 (1985), 45-121. | fulltext EuDML | fulltext (doi) | MR | Zbl

[17] R. Musina, Multiple positive solutions of a scalar field equation in $\mathbb{R}^N$, Top. Methods Nonlinear Anal., 7 (1996), 171-186. | fulltext (doi) | MR | Zbl

[18] I. Peral, Some results on Quasilinear Elliptic Equations: Growth versus Shape, in Proceedings of the Second School of Nonlinear Functional Analysis and Applications to Differential Equations, I.C.T.P. Trieste, Italy, A. Ambrosetti and it alter editors. World Scientific, 1998. | MR

[19] M. Picone, Sui valori eccezionali di un parametro da cui dipende una equazione differenziale lineare ordinaria del secondo ordine, Ann. Scuola. Norm. Pisa., 11 (1910), 1-144. | fulltext EuDML | MR | Zbl

[20] G. Polya - G. Szego, Isoperimetric inequalities in mathematical physics, Gosudarstv. Izdat. Fiz. Mat., Moscow 1962. | MR | Zbl

[21] D. Smets, Nonlinear Schrödinger equations with Hardy potential and critical nonlinearities, Trans. AMS, to appear. | fulltext (doi) | MR

[22] J. Simon, Regularité de la solution d’une equation non lineaire dans $\mathbb{R}^N$, Lectures Notes in Math, no. 665, P. Benilan editor, Springer Verlag, 1978. | MR

[23] G. Tarantello, On nonhomogeneous elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire. 9, no. 3 (1992), 281-304. | fulltext EuDML | fulltext (doi) | MR | Zbl

[24] P. Tolksdorf, Regularity for more general class of quasilinear elliptic equations, J. Diff. Eq., 51 (1984), 126-150. | fulltext (doi) | MR | Zbl

[25] S. Terracini, On positive entire solutions to a class of equations with singular coefficient and critical exponent, Adv. Diff. Equ., 1, no. 2 (1996), 241-264. | MR | Zbl

[26] J. L. Vázquez, A Strong Maximum Principle for Some Quasilinear Elliptic Equations, Applied Math. and Optimization., 12, no. 3 (1984), 191-202. | fulltext (doi) | MR

[27] M. Willem, Minimax theorems, Progress in Nonlinear Differential Equations and their Applications, 24, Birkhäuser Boston, Inc., Boston, MA, 1996. | fulltext (doi) | MR