Holomorphic vector bundles on certain holomorphically convex complex manifolds
Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 2, pp. 261-265.

Voir la notice de l'article dans Biblioteca Digitale Italiana di Matematica

Qui proviamo l'esistenza di fibrati vettoriali olomorfi non triviali su ogni varietà complessa 0-convessa ma non Stein e su certe classi di varietà complesse olomorficamente convesse.
@article{BUMI_2006_8_9B_2_a0,
     author = {Ballico, Edoardo},
     title = {Holomorphic vector bundles on certain holomorphically convex complex manifolds},
     journal = {Bollettino della Unione matematica italiana},
     pages = {261--265},
     publisher = {mathdoc},
     volume = {Ser. 8, 9B},
     number = {2},
     year = {2006},
     zbl = {1178.14008},
     mrnumber = {2233136},
     language = {it},
     url = {https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_2_a0/}
}
TY  - JOUR
AU  - Ballico, Edoardo
TI  - Holomorphic vector bundles on certain holomorphically convex complex manifolds
JO  - Bollettino della Unione matematica italiana
PY  - 2006
SP  - 261
EP  - 265
VL  - 9B
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_2_a0/
LA  - it
ID  - BUMI_2006_8_9B_2_a0
ER  - 
%0 Journal Article
%A Ballico, Edoardo
%T Holomorphic vector bundles on certain holomorphically convex complex manifolds
%J Bollettino della Unione matematica italiana
%D 2006
%P 261-265
%V 9B
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_2_a0/
%G it
%F BUMI_2006_8_9B_2_a0
Ballico, Edoardo. Holomorphic vector bundles on certain holomorphically convex complex manifolds. Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 2, pp. 261-265. https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_2_a0/

[1] A. Andreotti and H. Grauert, Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France 90 (1962), 193-259. | fulltext EuDML | Zbl

[2] C. Banica and J. Le Potier, Sur l'existence des fibrés holomorphes sur une surface non-algebrique, J. Reine Angew. Math. 378 (1987), 1-31. | fulltext EuDML | Zbl

[3] J. Bingener, Über formale komplexe Raume, Manuscripta Math. 24 (1978), 253-293. | fulltext EuDML

[4] M. Coltoiu, On the Oka-Grauert principle for 1-convex manifolds, Math. Ann. 310 (1998), 561-569. | Zbl

[5] H. Flenner, Extendability of differential forms on non-isolated singularities, Invent. Math. 94 (1988), 317-326. | fulltext EuDML | Zbl

[6] G. Henkin and J. Leiterer, The Oka-Grauert principle without induction over the base dimension, Math. Ann. 311 (1998), 71-93. | Zbl

[7] B. Malgrange, Faisceaux sur les variétés analytique-reélles, Bull. Soc. Math. France 85 (1957), 231-237. | fulltext EuDML

[8] H. Samelson, Notes on Lie Algebras, Universitext, Springer, 1990. | Zbl

[9] Y.-T. Siu, Analytic sheaf cohomology groups of dimension n of n-dimensional complex spaces, Trans. Amer. Math. Soc. 143 (1969), 77-94. | Zbl

[10] J. Winkelmann, Every compact complex manifold admits a holomorphic vector bundle, Revue Roum. Math. Pures et Appl. 38 (1993), 743-744. | Zbl

[11] J. Winkelmann, Complex analytic geometry of complex parallelizable manifolds, Mémoires Soc. Math. France 72-73, 1998. | fulltext EuDML | Zbl