Voir la notice de l'article dans Biblioteca Digitale Italiana di Matematica
@article{BUMI_2006_8_9B_2_a0, author = {Ballico, Edoardo}, title = {Holomorphic vector bundles on certain holomorphically convex complex manifolds}, journal = {Bollettino della Unione matematica italiana}, pages = {261--265}, publisher = {mathdoc}, volume = {Ser. 8, 9B}, number = {2}, year = {2006}, zbl = {1178.14008}, mrnumber = {2233136}, language = {it}, url = {https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_2_a0/} }
TY - JOUR AU - Ballico, Edoardo TI - Holomorphic vector bundles on certain holomorphically convex complex manifolds JO - Bollettino della Unione matematica italiana PY - 2006 SP - 261 EP - 265 VL - 9B IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_2_a0/ LA - it ID - BUMI_2006_8_9B_2_a0 ER -
Ballico, Edoardo. Holomorphic vector bundles on certain holomorphically convex complex manifolds. Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 2, pp. 261-265. https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_2_a0/
[1] Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France 90 (1962), 193-259. | fulltext EuDML | Zbl
and ,[2] Sur l'existence des fibrés holomorphes sur une surface non-algebrique, J. Reine Angew. Math. 378 (1987), 1-31. | fulltext EuDML | Zbl
and ,[3] Über formale komplexe Raume, Manuscripta Math. 24 (1978), 253-293. | fulltext EuDML
,[4] On the Oka-Grauert principle for 1-convex manifolds, Math. Ann. 310 (1998), 561-569. | Zbl
,[5] Extendability of differential forms on non-isolated singularities, Invent. Math. 94 (1988), 317-326. | fulltext EuDML | Zbl
,[6] The Oka-Grauert principle without induction over the base dimension, Math. Ann. 311 (1998), 71-93. | Zbl
and ,[7] Faisceaux sur les variétés analytique-reélles, Bull. Soc. Math. France 85 (1957), 231-237. | fulltext EuDML
,[8] Notes on Lie Algebras, Universitext, Springer, 1990. | Zbl
,[9] Analytic sheaf cohomology groups of dimension n of n-dimensional complex spaces, Trans. Amer. Math. Soc. 143 (1969), 77-94. | Zbl
,[10] Every compact complex manifold admits a holomorphic vector bundle, Revue Roum. Math. Pures et Appl. 38 (1993), 743-744. | Zbl
,[11] Complex analytic geometry of complex parallelizable manifolds, Mémoires Soc. Math. France 72-73, 1998. | fulltext EuDML | Zbl
,