Inverse results for generalized Favard-Kantorovich and Favard-Durrmeyer operators in weighted function spaces
Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 1, pp. 183-195.

Voir la notice de l'article dans Biblioteca Digitale Italiana di Matematica

Consideriamo le modificazioni di tipo Kantorovich e Durrmeyer degli operatori generalizzati di Favard e proviamo i teoremi inversi di approssimazione per funzioni \(f\) tali che \(w_{2m} f \in L^p (R)\), dove \(1\leq p \leq \infty\) e \(w_{2m}(x)=(1+ x^{2m})^{-1}\), $m \in N_0$.
@article{BUMI_2006_8_9B_1_a8,
     author = {Grzegorz, Nowak},
     title = {Inverse results for generalized {Favard-Kantorovich} and {Favard-Durrmeyer} operators in weighted function spaces},
     journal = {Bollettino della Unione matematica italiana},
     pages = {183--195},
     publisher = {mathdoc},
     volume = {Ser. 8, 9B},
     number = {1},
     year = {2006},
     zbl = {1150.41016},
     mrnumber = {2204906},
     language = {it},
     url = {https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_1_a8/}
}
TY  - JOUR
AU  - Grzegorz, Nowak
TI  - Inverse results for generalized Favard-Kantorovich and Favard-Durrmeyer operators in weighted function spaces
JO  - Bollettino della Unione matematica italiana
PY  - 2006
SP  - 183
EP  - 195
VL  - 9B
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_1_a8/
LA  - it
ID  - BUMI_2006_8_9B_1_a8
ER  - 
%0 Journal Article
%A Grzegorz, Nowak
%T Inverse results for generalized Favard-Kantorovich and Favard-Durrmeyer operators in weighted function spaces
%J Bollettino della Unione matematica italiana
%D 2006
%P 183-195
%V 9B
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_1_a8/
%G it
%F BUMI_2006_8_9B_1_a8
Grzegorz, Nowak. Inverse results for generalized Favard-Kantorovich and Favard-Durrmeyer operators in weighted function spaces. Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 1, pp. 183-195. https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_1_a8/

[1] M. Becker - P.L. Butzer - R.J. Nessel, Saturation for Favard operators in weighted function spaces, Studia Math., 59 (1976), 139-153. | fulltext EuDML | fulltext (doi) | MR | Zbl

[2] M. Becker, Inverse theorems for Favard operators in polynomial weight spaces,Ann. Soc. Math. Pol., Ser. I: Comment Math., 22 (1981), 165-173. | MR | Zbl

[3] H. Berens - G.G. Lorentz, Inverse theorems for Bernstein polynomials, Indiana University Mathematics Journal, Vol. 21, No 8 (1972). | fulltext (doi) | MR | Zbl

[4] P.L. Butzer - R.J. Nessel, Fourier Analysis and Approximation, Vol. I, Academic Press, New York and London, 1971. | MR | Zbl

[5] Z. Ditzian - V. Totik, Moduli of Smoothness, Springer Series in Computational Mathematics, Vol. 9, Springer-Verlag, New York Inc., 1987. | fulltext (doi) | MR

[6] J. Favard, Sur les multiplicateurs d'interpolation, J. Math. Pures Appl., 23 (1944),219-247. | MR | Zbl

[7] W. Gawronski - U. Stadtmuller, Approximation of continuous functions by generalized Favard operators, J. Approx. Theory, 34 (1982), 384-396. | fulltext (doi) | MR | Zbl

[8] G. Nowak, Direct results for generalized Favard-Kantorovich and Favard-Durrmeyer operators in weighted function spaces. Demonstratio Math., 36 (2003), 879-891. | MR | Zbl

[9] G. Nowak - P. Pych-Taberska, Approximation properties of the generalized Favard-Kantorovich operators, Ann. Soc. Math. Pol., Ser. I: Comment. Math., 39 (1999), 139-152. | MR | Zbl

[10] G. Nowak - P. Pych-Taberska, Some properties of the generalized Favard Durrmeyer operators, Funct. et Approximatio, Comment. Math., 29 (2001), 103-112. | MR

[11] P. Pych-Taberska, On the generalized Favard operators, Funct. Approximatio, Comment. Math., 26 (1998), 256-273. | MR | Zbl