Inverse results for generalized Favard-Kantorovich and Favard-Durrmeyer operators in weighted function spaces
Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 1, pp. 183-195.

Voir la notice de l'article dans Biblioteca Digitale Italiana di Matematica

We consider the Kantorovich and the Durrmeyer type modifications of the generalized Favard operators and we prove inverse approximation theorems for functions \(f\) such that \(w_{2m} f \in L^p (R)\), where \(1\leq p \leq \infty\) and \(w_{2m}(x)=(1+ x^{2m})^{-1}\), mN0.
Consideriamo le modificazioni di tipo Kantorovich e Durrmeyer degli operatori generalizzati di Favard e proviamo i teoremi inversi di approssimazione per funzioni \(f\) tali che \(w_{2m} f \in L^p (R)\), dove \(1\leq p \leq \infty\) e \(w_{2m}(x)=(1+ x^{2m})^{-1}\), mN0.
@article{BUMI_2006_8_9B_1_a8,
     author = {Grzegorz, Nowak},
     title = {Inverse results for generalized {Favard-Kantorovich} and {Favard-Durrmeyer} operators in weighted function spaces},
     journal = {Bollettino della Unione matematica italiana},
     pages = {183--195},
     publisher = {mathdoc},
     volume = {Ser. 8, 9B},
     number = {1},
     year = {2006},
     zbl = {1150.41016},
     mrnumber = {2204906},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_1_a8/}
}
TY  - JOUR
AU  - Grzegorz, Nowak
TI  - Inverse results for generalized Favard-Kantorovich and Favard-Durrmeyer operators in weighted function spaces
JO  - Bollettino della Unione matematica italiana
PY  - 2006
SP  - 183
EP  - 195
VL  - 9B
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_1_a8/
LA  - en
ID  - BUMI_2006_8_9B_1_a8
ER  - 
%0 Journal Article
%A Grzegorz, Nowak
%T Inverse results for generalized Favard-Kantorovich and Favard-Durrmeyer operators in weighted function spaces
%J Bollettino della Unione matematica italiana
%D 2006
%P 183-195
%V 9B
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_1_a8/
%G en
%F BUMI_2006_8_9B_1_a8
Grzegorz, Nowak. Inverse results for generalized Favard-Kantorovich and Favard-Durrmeyer operators in weighted function spaces. Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 1, pp. 183-195. https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_1_a8/

[1] M. Becker - P.L. Butzer - R.J. Nessel, Saturation for Favard operators in weighted function spaces, Studia Math., 59 (1976), 139-153. | fulltext EuDML | DOI | MR | Zbl

[2] M. Becker, Inverse theorems for Favard operators in polynomial weight spaces,Ann. Soc. Math. Pol., Ser. I: Comment Math., 22 (1981), 165-173. | MR | Zbl

[3] H. Berens - G.G. Lorentz, Inverse theorems for Bernstein polynomials, Indiana University Mathematics Journal, Vol. 21, No 8 (1972). | DOI | MR | Zbl

[4] P.L. Butzer - R.J. Nessel, Fourier Analysis and Approximation, Vol. I, Academic Press, New York and London, 1971. | MR | Zbl

[5] Z. Ditzian - V. Totik, Moduli of Smoothness, Springer Series in Computational Mathematics, Vol. 9, Springer-Verlag, New York Inc., 1987. | DOI | MR

[6] J. Favard, Sur les multiplicateurs d'interpolation, J. Math. Pures Appl., 23 (1944),219-247. | MR | Zbl

[7] W. Gawronski - U. Stadtmuller, Approximation of continuous functions by generalized Favard operators, J. Approx. Theory, 34 (1982), 384-396. | DOI | MR | Zbl

[8] G. Nowak, Direct results for generalized Favard-Kantorovich and Favard-Durrmeyer operators in weighted function spaces. Demonstratio Math., 36 (2003), 879-891. | MR | Zbl

[9] G. Nowak - P. Pych-Taberska, Approximation properties of the generalized Favard-Kantorovich operators, Ann. Soc. Math. Pol., Ser. I: Comment. Math., 39 (1999), 139-152. | MR | Zbl

[10] G. Nowak - P. Pych-Taberska, Some properties of the generalized Favard Durrmeyer operators, Funct. et Approximatio, Comment. Math., 29 (2001), 103-112. | MR

[11] P. Pych-Taberska, On the generalized Favard operators, Funct. Approximatio, Comment. Math., 26 (1998), 256-273. | MR | Zbl