Voir la notice de l'article dans Biblioteca Digitale Italiana di Matematica
@article{BUMI_2006_8_9B_1_a5, author = {Prinari, Francesca}, title = {Relaxation and gamma-convergence of supremal functionals}, journal = {Bollettino della Unione matematica italiana}, pages = {101--132}, publisher = {mathdoc}, volume = {Ser. 8, 9B}, number = {1}, year = {2006}, zbl = {1178.49018}, mrnumber = {1917396}, language = {it}, url = {https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_1_a5/} }
TY - JOUR AU - Prinari, Francesca TI - Relaxation and gamma-convergence of supremal functionals JO - Bollettino della Unione matematica italiana PY - 2006 SP - 101 EP - 132 VL - 9B IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_1_a5/ LA - it ID - BUMI_2006_8_9B_1_a5 ER -
Prinari, Francesca. Relaxation and gamma-convergence of supremal functionals. Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 1, pp. 101-132. https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_1_a5/
[1] The class of functional which can be represented by a supremum, J. Conv. Anal., 9 (2002), 225-236. | MR | Zbl
- - ,[2] Variational Convergence for Functions and Operators, Appl. Math.Ser. Pitman, Boston (1984). | MR | Zbl
,[3] Radon-Nikodym Theorem in $L^\infty$, Appl. Math. Optim., 2 (2000), 103-126. | fulltext (doi) | MR
- - ,[4] Relaxed minimax control, SIAM J. Control Optimazion, 33 (1995), 1028-1039. | fulltext (doi) | MR
- ,[5] Calculus of Variations in $L^\infty$, App. Math. Optim., 35 (1997), 237-263. | fulltext (doi) | MR | Zbl
- ,[6] Integrand normales et mésures paramétres en calcul des variations, Bull. Soc. Math. France, 101 (1973), 129-184. | fulltext EuDML | MR
- ,[7] $\Gamma$-Limits of integral functionals, J. Analyse Math., 37 (1980), 145-185. | fulltext (doi) | MR
- ,[8] On Nemyckii operators and integral representation of local functionals, Rendiconti di Matematica, 3 (1983), 491-510. | MR | Zbl
- ,[9] Integral representation and relaxation of local functionals, Nonlinear Anal., 9 (1985), 515-532. | fulltext (doi) | MR | Zbl
- ,[10] Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations, Pitman Res. Notes Math. Ser., 207, Longman, Harlow (1989). | MR
,[11] Convex Analysis and measurable Multifunctions, Lecture Notes in Math., 590, Springer-Verlag, Berlin (1977). | MR | Zbl
- ,[12] Direct Methods in the Calculus of Variations, Appl. Math. Sciences 78, Springer-Verlag, Berlin (1989). | fulltext (doi) | MR | Zbl
,[13] An introduction to Gamma-convergence, Birkhäuser, Boston (1993). | fulltext (doi) | MR | Zbl
,[14] A general theory of variational functionals, In «Topics ifunctional analysis», Quaderni, Scuola Norm. Sup. Pisa, Pisa (1982), 149-221. | MR
- ,[15] Convex Analysis and variational problems, North Holland, Amsterdam (1978). | MR | Zbl
- ,[16] Dualità e perturbazioni di funzionali integrali, Ricerche Mat., 26 (1977), 383-421. | MR
- ,[17] Relaxation methods in control theory, Appl. Math. Optim. 1 (1989), 97-103. | fulltext (doi) | MR | Zbl
- ,[18] Variational models for microstructure and phase transitions, Lecture Notes in Math., 1713, Springer, Berlin (1999), 85-210. | fulltext (doi) | MR | Zbl
,[19] Calculus of Variations for Supremal Functionals, PhD Thesis, University of Pisa. | Zbl
,[20] Young Measures, Lecture Notes in Math 1446, Springer, Berlin(1990), 152-188. | fulltext (doi) | MR
,[21] A course on Young Measures, Rend. Istit. Mat. Univ. Trieste, 26 (1994), 349-394. | MR
,[22] Duality for level sum of quasiconvex function and applications, ESAIM Control Optim. Calc. Var., 3 (1998), 329-343. | fulltext EuDML | fulltext (doi) | MR | Zbl
,