Voir la notice de l'article dans Biblioteca Digitale Italiana di Matematica
@article{BUMI_2006_8_9B_1_a4, author = {Natale, Mar{\'\i}a F. and Tarzia, Domingo A.}, title = {Explicit solutions for a one-phase {Stefan} problem with temperature-dependent thermal conductivity}, journal = {Bollettino della Unione matematica italiana}, pages = {79--99}, publisher = {mathdoc}, volume = {Ser. 8, 9B}, number = {1}, year = {2006}, zbl = {1118.80005}, mrnumber = {1702131}, language = {it}, url = {https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_1_a4/} }
TY - JOUR AU - Natale, María F. AU - Tarzia, Domingo A. TI - Explicit solutions for a one-phase Stefan problem with temperature-dependent thermal conductivity JO - Bollettino della Unione matematica italiana PY - 2006 SP - 79 EP - 99 VL - 9B IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_1_a4/ LA - it ID - BUMI_2006_8_9B_1_a4 ER -
%0 Journal Article %A Natale, María F. %A Tarzia, Domingo A. %T Explicit solutions for a one-phase Stefan problem with temperature-dependent thermal conductivity %J Bollettino della Unione matematica italiana %D 2006 %P 79-99 %V 9B %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_1_a4/ %G it %F BUMI_2006_8_9B_1_a4
Natale, María F.; Tarzia, Domingo A. Explicit solutions for a one-phase Stefan problem with temperature-dependent thermal conductivity. Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 1, pp. 79-99. https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_1_a4/
[1] Mathematical modeling of melting and freezing processes, Hemisphere - Taylor & Francis, Washington (1983).
- ,[2] I. ATHANASOPOULOS - G. MAKRAKIS - J. F. RODRIGUES (EDS.), Free Boundary Problems: Theory and Applications, CRC Press, Boca Raton (1999). | MR
[3] An asymptotic solution for short-time transient heat conductionbetween two similar contacting bodies, Int. J. Heat Mass Transfer, 32, No 5 (1989),943-949.
,[4] Exact solutions for water infiltration with an arbitrary surface flux or nonlinear solute adsorption, Water Resources Research, 27, No 10 (1991), 2667-2680.
- ,[5] On the remarkable nonlinear diffusion equation, J. Math. Phys., 21 (1980), 1019-1023. | fulltext (doi) | MR | Zbl
- ,[6] Determination of unknown thermal coefficients for Storm’s-type materials through a phase-change process, Int. J.Non-Linear Mech., 34 (1999), 324-340. | fulltext (doi) | MR
- - ,[7] Non-integrability of non-linear diffusion-convection equationsin two spatial dimensions, J. Phys. A: Math. Gen., 19 (1986), 1245-1257. | MR | Zbl
,[8] Integrable forms of the one-dimensional flow equation for unsaturated heterogeneous porous media, J. Math. Phys., 29 (1988), 622-627. | fulltext (doi) | MR | Zbl
,[9] The one-dimensional heat equation, Addison - Wesley, Menlo Park (1984). | fulltext (doi) | MR | Zbl
,[10] Conduction of heat in solids, Oxford University Press, London (1959). | MR | Zbl
- ,[11] J. M. CHADAM - H. RASMUSSEN H. (EDS.), Free boundary problems involving solids, Pitman Research Notes in Mathematics Series 281, Longman, Essex (1993). | MR
[12] Liquid phase mass transfer coefficients for bubbles growing in a pressure field: a simplified analysis, Int. Comm. Heat Mass Transfer,27, No 1 (2000), 99-108.
,[13] Free and moving boundary problems, Clarendon Press, Oxford (1984). | MR | Zbl
,[14] J. I. DIAZ - M. A. HERRERO - A. LIÑAN - J. L. VAZQUEZ (Eds.), Free boundary problems: theory and applications, Pitman Research Notes in Mathematics Series323, Longman, Essex (1995).
[15] Nonlinear diffusion problems, Lecture Notes in Math., N. 1224, Springer Verlag, Berlin (1986). | fulltext (doi) | MR
- (Eds.),[16] On the exactly solvable equation $S_t = [(\beta S + \gamma)^{-2} S_x]_x + \alpha(\beta S + g)^{-2} Sx$ occurring in two-phase flow in porous media, SIAM J. Appl. Math., 42, No 2 (1982), 318-331. | fulltext (doi) | MR
- ,[17] N. KENMOCHI (Ed.), Free Boundary Problems: Theory and Applications, I,II, Gakuto International Series: Mathematical Sciences and Applications, Vol. 13, 14, Gakkotosho, Tokyo (2000). | MR
[18] Exact solutions in nonlinear diffusion, J. Engrg. Math., 8 (1974), 219-227. | fulltext (doi) | MR | Zbl
- ,[19] Memoire sur la solidification par refroidissementd’un globe liquide, Annales Chimie Physique, 47 (1831), 250-256.
- ,[20] Heat transfer with freezing and thawing, Elsevier, Amsterdam (1991)
,[21] Group transformations and the nonlinear heat diffusion equation, SIAM J. Appl. Math., 40,No 2 (1981), 191-207. | fulltext (doi) | MR | Zbl
- - - - ,[22] Explicit solutions to the two-phase Stefan problemfor Storm-type materials, J. Phys. A: Math. Gen., 33 (2000), 395-404. | fulltext (doi) | MR | Zbl
- ,[23] Explicit solutions to the one-phase Stefan problemwith temperature-dependent thermal conductivity and a convective term, Int. J.Engng. Sci., 41 (2003), 1685-1698. | fulltext (doi) | MR | Zbl
- ,[24] General method of exact solution of the concentration-dependent diffusion equation, Australian J. Physics, 13 (1960), 1-12. | MR | Zbl
,[25] The method of the «carry over» of integral transforms in non-linear mass and heat transfer problems, Int. J. Heat Mass Transfer, 33, No 1 (1990), 175-181
- ,[26] Application of a reciprocal transformation to a two-phase Stefan problem, J. Phys. A: Math. Gen., 18 (1985), 105-109. | MR
,[27] On a class of moving boundary problems in non-linear heat condition: Application of a Bäcklund transformation, Int. J. Non-Linear Mech., 21 (1986), 249-256. | fulltext (doi) | MR | Zbl
,[28] On a nonlinear moving boundary problem with heterogeneity: application of reciprocal transformation, Journal of Applied Mathematics and Physics (ZAMP), 39 (1988), 122-129. | fulltext (doi) | MR | Zbl
- ,[29] Exact solution fornonlinear nonhysteretic redistribution in vertical soli of finite depth, Water Resources Research, 27 (1991), 1529-1536.
- - - ,[30] An inequality for the coefficient $\sigma$ of the free boundary $s(t) = 2\sigma\sqrt{t}$ of the Neumann solution for the two-phase Stefan problem, Quart. Appl. Math., 39(1981), 491-497. | fulltext (doi) | MR
,[31] A bibliography on moving - free boundary problems for the heat-diffusion equation. The Stefan and related problems, MAT-Serie A #2 (2000) (with 5869 titles on the subject, 300 pages). See www.austral.edu.ar/MAT-SerieA/2(2000)/ | MR
,[32] A similarity solution of a multiphase Stefan problem incorporating general non-linear heat conduction, Int. J. Heat Mass Transfer, 37, No 14 (1994), 2113-2121. | Zbl
- ,