Cauchy problem in multi-anisotropic Gevrey classes for weakly hyperbolic operators
Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 1, pp. 21-50.

Voir la notice de l'article dans Biblioteca Digitale Italiana di Matematica

Si dimostra la buona positura del problema di Cauchy per sistemi debolmente iperbolici nell'ambito delle classi Gevrey multi-anisotrope, generalizzanti le classi Gevrey standard. Il risultato è ottenuto sotto le seguenti ipotesi: la parte principale ha e coefficienti costanti; i termini di ordine inferiore soddisfano delle condizioni di tipo Levi; infine i coefficienti dei termini di ordine inferiore appartengono a un'opportuna classe Gevrey anisotropa. Nella dimostrazione viene utilizzata la tecnica della quasi-simmetrizzazione di sistemi di tipo Sylvester, adattata alle classi Gevrey multi-anisotrope e tenendo conto dei termini di ordine inferiore.
@article{BUMI_2006_8_9B_1_a1,
     author = {Calvo, Daniela},
     title = {Cauchy problem in multi-anisotropic {Gevrey} classes for weakly hyperbolic operators},
     journal = {Bollettino della Unione matematica italiana},
     pages = {21--50},
     publisher = {mathdoc},
     volume = {Ser. 8, 9B},
     number = {1},
     year = {2006},
     zbl = {1178.35236},
     mrnumber = {1435282},
     language = {it},
     url = {https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_1_a1/}
}
TY  - JOUR
AU  - Calvo, Daniela
TI  - Cauchy problem in multi-anisotropic Gevrey classes for weakly hyperbolic operators
JO  - Bollettino della Unione matematica italiana
PY  - 2006
SP  - 21
EP  - 50
VL  - 9B
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_1_a1/
LA  - it
ID  - BUMI_2006_8_9B_1_a1
ER  - 
%0 Journal Article
%A Calvo, Daniela
%T Cauchy problem in multi-anisotropic Gevrey classes for weakly hyperbolic operators
%J Bollettino della Unione matematica italiana
%D 2006
%P 21-50
%V 9B
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_1_a1/
%G it
%F BUMI_2006_8_9B_1_a1
Calvo, Daniela. Cauchy problem in multi-anisotropic Gevrey classes for weakly hyperbolic operators. Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 1, pp. 21-50. https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_1_a1/

[1] P. Boggiatto - E. Buzano - L. Rodino, Global hypoellipticity and spectral theory,Akademie Verlag, Berlin, 1996. | MR | Zbl

[2] M. D. Bronstein, The Cauchy problem for hyperbolic operators with characteristics of variable multiplicity, Trudy Moscow Math. Soc., 41 (1980), 87-103. | MR

[3] D. Calvo, Generalized Gevrey classes and multi-quasi-hyperbolic operators, Rend. Sem. Mat. Univ. Pol. Torino, 6, N. 2 (2002), 73-100. | fulltext EuDML | MR | Zbl

[4] D. Calvo, Cauchy problem in generalized Gevrey classes, Evolution Equations, Propagation Phenomena - Global Existence - Influence of Non-Linearities, Eds. R. Picard, M. Reissig, W. Zajaczkowski, Warszawa 2003, Banach Center Publications, Vol. 60, 269-278. | MR | Zbl

[5] D. Calvo, Cauchy problem in inhomogeneous Gevrey classes, Progress in Analysis, Proceeding of the 3rd International ISAAC Congress, Vol. II, Eds. G. W. Bgehr, R. B. Gilber, M. W. Wong, World Scientific (Singapore, 2003), 1015-1033. | MR | Zbl

[6] L. Cattabriga, Alcuni problemi per equazioni differenziali lineari con coefficienti costanti, Quad. Un. Mat. It., 24, Pitagora 1983, Bologna.

[7] F. Colombini - S. Spagnolo, An example of weakly hyperbolic Cauchy problem not well-posed in C I , Acta Math., 148 (1982), 243-253. | fulltext (doi) | MR | Zbl

[8] A. Corli, Un Teorema di rappresentazione per certe classi generalizzate di Gevrey, Boll. Un. Mat. It. Serie VI, Vol. 4-C, N.1 (1985), 245-257. | MR

[9] P. D'Ancona - S. Spagnolo, Quasi-symmetrization of hyperbolic systems and propagation of the analytic regularity, Boll. Un. Mat. It., 1-B (1998), 165-185. | fulltext bdim | fulltext EuDML | MR

[10] J. Friberg, Multi-quasielliptic polynomials, Ann. Sc. Norm. Sup. Pisa, Cl. di Sc., 21 (1967), 239-260. | fulltext EuDML | MR

[11] G. Garello, Generalized Sobolev algebras and regularity for solutions of multiquasi-elliptic semilinear equations, Comm. Appl. Anal., 3, N. 4 (1999), 563-574. | MR | Zbl

[12] G. Garello, Pseudodifferential operators with symbols in weighted Sobolev spaces and regularity for non linear partial differential equations, Math. Nachr., 239-240 (2002), 62-79. | fulltext (doi) | MR | Zbl

[13] G. Gindikin - L. R. Volevich, The method of Newton's polyhedron in the theory of partial differential equations, Mathematics and its applications, Soviet Series, 86 (1992). | fulltext (doi) | MR | Zbl

[14] G. H. Hakobyan - V. N. Markaryan, On Gevrey type solutions of hypoelliptic equations, Journal of Contemporary Math. Anal. (Armenian Akad. of Sciences), 31, N. 2 (1996), 33-47. | MR

[15] G. H. Hakobyan - V. N. Markaryan, Gevrey class solutions of hypoellipticequations, IZV. Nat. Acad. Nauk Arm., Math., 33, N. 1 (1998), 35-47. | MR

[16] L. Hormander, The analysis of linear partial differential operators, I, II, III, IV, Springer-Verlag, Berlin, 1983-1985. | fulltext (doi) | MR

[17] E. Jannelli, Sharp quasi-symmetrizer for hyperbolic Sylvester matrices, Communication in the «Workshop on Hyperbolic PDE», Venezia 11-12 April 2002, to appear.

[18] E. Jannelli, On the symmetrization of the principal symbol of hyperbolic equations, Comm. Partial Differential Equations, 14 (1989), 1617-1634. | fulltext (doi) | MR

[19] K. Kajitani, Local solution of the Cauchy problem for nonlinear hyperbolic systems in Gevrey classes, Hokkaido Math. J., 12 (1983), 434-460. | fulltext (doi) | MR

[20] E. Larsson, Generalized hyperbolicity, Ark. Mat., 7 (1967), 11-32. | fulltext (doi) | MR

[21] J. Leray, Équations hyperboliques non-strictes: contre-exemples, du type De Giorgi, aux théorèmes d'existence et d'unicité, Math. Ann., 162 (1966), pp. 228-236. | fulltext EuDML | fulltext (doi) | MR | Zbl

[22] J. Leray - Y. Ohya, Équations et systemes non-lineaires, hyperboliques non-stricts, Math. Ann., 70 (1967), 167-205. | fulltext EuDML | fulltext (doi) | MR | Zbl

[23] O. Liess - L. Rodino, Inhomogeneous Gevrey classes and related pseudodifferential operators, Anal. Funz. Appl. Boll. Un. Mat. It., 3-C, N. 1 (1984), 233-323. | MR | Zbl

[24] S. Mizohata, The theory of partial differential equations, Universiy Press, Cambridge, 1973. | MR | Zbl

[25] L. Rodino, Linear partial differential operators in Gevrey spaces, World Scientific Publishing Co., Singapore, 1993. | fulltext (doi) | MR | Zbl

[26] S. Steinberg, Existence and uniqueness of solutions of hyperbolic equations which are not necessarily strictly hyperbolic, J. Differential Equations, 17 (1975), 119-153. | fulltext (doi) | MR | Zbl

[27] L. Zanghirati, Iterati di una classe di operatori ipoellittici e classi generalizzate di Gevrey, Suppl. Boll. Un. Mat. It., 1 (1980), 177-195. | MR

[28] L. Zanghirati, Iterati di operatori e regolarita Gevrey microlocale anisotropa, Rend. Sem. Mat. Univ. Padova, 67 (1982), 85-104. | fulltext EuDML | MR