Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2006_8_9B_1_a0, author = {Giorgilli, Antonio and Muraro, Daniele}, title = {Exponentially stable manifolds in the neighbourhood of elliptic equilibria}, journal = {Bollettino della Unione matematica italiana}, pages = {1--20}, publisher = {mathdoc}, volume = {Ser. 8, 9B}, number = {1}, year = {2006}, zbl = {1178.70084}, mrnumber = {2112707}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_1_a0/} }
TY - JOUR AU - Giorgilli, Antonio AU - Muraro, Daniele TI - Exponentially stable manifolds in the neighbourhood of elliptic equilibria JO - Bollettino della Unione matematica italiana PY - 2006 SP - 1 EP - 20 VL - 9B IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_1_a0/ LA - en ID - BUMI_2006_8_9B_1_a0 ER -
%0 Journal Article %A Giorgilli, Antonio %A Muraro, Daniele %T Exponentially stable manifolds in the neighbourhood of elliptic equilibria %J Bollettino della Unione matematica italiana %D 2006 %P 1-20 %V 9B %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_1_a0/ %G en %F BUMI_2006_8_9B_1_a0
Giorgilli, Antonio; Muraro, Daniele. Exponentially stable manifolds in the neighbourhood of elliptic equilibria. Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 1, pp. 1-20. https://geodesic-test.mathdoc.fr/item/BUMI_2006_8_9B_1_a0/
[1] Localization of energy in FPU chains, DCDS-B, to appear. | DOI | MR | Zbl
- - ,[2] Anharmonic chain with Lennard-Jones interaction, Phys. Rew. A, 2 (1970), 2013-2019.
- - - ,[3] New phenomenon in the stochastic transition of coupled oscillators, Phys. Rev. A, 17 (1978), 786.
- - - - ,[4] The Fermi-Pasta-Ulam problem revisited: Stochasticity thresholds in nonlinear Hamiltonian systems, Phys. Rev. E, 55 (1997), 6566-6574. | DOI | MR
- - ,[5] On the solutions of Hamiltonian systems in the neighbourhood of asingular point, Proc. London Math. Soc., Ser. 2, 27 (1926), 151-170. | DOI | MR
,[6] Stochasticity of the simplest dynamical model with divided phase space, Dokl. Akad. Nauk. SSSR, 166 (1966), 57; Sov. Phys. Dokl., 11 (1966), 30.
- ,[7] Finite time to equipartition in the thermodynamic limit, Phys. Rev. E, 60 (1999), 3781-3786.
- - ,[8] Studies of nonlinear problems, Los Alamos document LA-1940 (1955). | Zbl
- - ,[9] On the problem of energy equipartition for large systems of the Fermi-Pasta-Ulam type: analytical and numerical estimates, Physica D, 59 (1992), 334-348. | DOI | MR | Zbl
- - - ,[10] Unstable equilibria of Hamiltonian systems, Disc. and Cont. Dynamical Systems, Vol. 7, N. 4 (2001), 855-871. | DOI | MR | Zbl
,[11] Equipartition thresholds in chains of anharmonic oscillators, J. Stat. Phys., 76 (1994), 627-643.
- - ,[12] Relaxation to different stationary states in the Fermi-Pasta-Ulam model, Phys. Rev. A, 28 (1983), 3544-3552.
- - - - ,[13] Equipartition threshold in nonlinear large Hamiltonian systems: the Fermi-Pasta-Ulam model, Phys. Rev. A, 31 (1985), 1039-1045.
- - - - ,[14] On the generalization of a theorem of A. Liapounoff, Comm. Pure Appl. Math., 11 (1958), 257-271. | DOI | MR | Zbl
,[15] Relaxation properties and ergodicity breaking in nonlinear Hamiltonian dynamics, Phys. Rev. A, 41 (1990), 768-783. | DOI | MR
- ,