Existence and uniqueness of solutions for nonlinear and non coercive problems with measure data
Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 2, pp. 415-433.

Voir la notice de l'article dans Biblioteca Digitale Italiana di Matematica

Si prova l'esistenza di una soluzione rinormalizzata per un problema ellittico nonlineare noncoercivo in forma di divergenza, in presenza di termini di ordine inferiore al secondo e dato misura. In ipotesi più restrittive si ottiene anche un teorema di unicità.
@article{BUMI_2003_8_6B_2_a9,
     author = {Oppezzo, Pirro and Rossi, Anna Maria},
     title = {Existence and uniqueness of solutions for nonlinear and non coercive problems with measure data},
     journal = {Bollettino della Unione matematica italiana},
     pages = {415--433},
     publisher = {mathdoc},
     volume = {Ser. 8, 6B},
     number = {2},
     year = {2003},
     zbl = {1177.35079},
     mrnumber = {1354907},
     language = {it},
     url = {https://geodesic-test.mathdoc.fr/item/BUMI_2003_8_6B_2_a9/}
}
TY  - JOUR
AU  - Oppezzo, Pirro
AU  - Rossi, Anna Maria
TI  - Existence and uniqueness of solutions for nonlinear and non coercive problems with measure data
JO  - Bollettino della Unione matematica italiana
PY  - 2003
SP  - 415
EP  - 433
VL  - 6B
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BUMI_2003_8_6B_2_a9/
LA  - it
ID  - BUMI_2003_8_6B_2_a9
ER  - 
%0 Journal Article
%A Oppezzo, Pirro
%A Rossi, Anna Maria
%T Existence and uniqueness of solutions for nonlinear and non coercive problems with measure data
%J Bollettino della Unione matematica italiana
%D 2003
%P 415-433
%V 6B
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BUMI_2003_8_6B_2_a9/
%G it
%F BUMI_2003_8_6B_2_a9
Oppezzo, Pirro; Rossi, Anna Maria. Existence and uniqueness of solutions for nonlinear and non coercive problems with measure data. Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 2, pp. 415-433. https://geodesic-test.mathdoc.fr/item/BUMI_2003_8_6B_2_a9/

[1] P. Bènilan-L. Boccardo-T. Gallouët-R. Gariepy-M. Pierre-J. L.Vazquez, An $L^1$-Theory of Existence and Uniqueness of Solutions of Nonlinear Elliptic Equations, Ann. Sc. Norm. Sup. Pisa (4), 22, no. 2 (1995), 241-273. | fulltext mini-dml | MR | Zbl

[2] L. Boccardo-T. Gallouët-L. Orsina- Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data, Ann. Inst. H. Poincare Anal. Non Lineaire, 13, no. 5 (1996), 539-551. | fulltext mini-dml | MR | Zbl

[3] L. Boccardo-T. Gallouët-L. Orsina, Existence and nonexistence of solutions for some nonlinear elliptic equations, J. Anal. Math., 73 (1997), 203-223. | MR | Zbl

[4] G. Dal Maso-F. Murat-L. Orsina-A. Prignet, Renormalized solutions of elliptic equations with general measure data, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 28, no. 4 (1999), 741-808. | fulltext mini-dml | MR | Zbl

[5] T. Del Vecchio-M. R. Posteraro, Existence and regularity results for nonlinear elliptic equations with measure data, Adv. Differential Equations, 1, no. 5 (1996), 899-917. | MR | Zbl

[6] J. Leray-J. L. Lions, Quelques resultats de Višik sur les problemes elliptiques semilineaires par les methodes de Minty et Browder, Bull. Soc. Math. France, 93 (1965), 97-107. | fulltext mini-dml | MR | Zbl

[7] F. Murat, Soluciones renormalizadas de EDP elipticas no lineales, Publications du Laboratoire d'Analyse Numerique n. 93023, Universite Pierre et Marie Curie, Paris (1993).

[8] P. Oppezzi-A. M. Rossi, Renormalized Solutions for Divergence Problems with $L^1$ Data, Atti Sem. Mat. Fis. Univ. Modena Suppl. Vol., 46 (1998), 889-914. | MR | Zbl

[9] P. Oppezzi-A. M. Rossi, Unilateral problems with measure data: links and convergence, Differential Integral Equations, 14, no. 9 (2001), 1051-1076. | MR | Zbl

[10] P. Oppezzi-A. M. Rossi, Renormalized Solutions for Equations with Lower Order Terms and Measure Data, preprint n. 411, DIMA, Università di Genova, April 2000.

[11] A. Porretta, Existence for elliptic equations in $L^1$ having lower order terms with natural growth, Portugal. Math., 57, no. 2 (2000), 179-190. | MR | Zbl