Homogenization of a one-dimensional model for compressible miscible flow in porous media
Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 2, pp. 399-414.

Voir la notice de l'article dans Biblioteca Digitale Italiana di Matematica

Si considera un modello unidimensionale di flusso in un mezzo poroso eterogeneo di due fluidi miscibili e compressibili. Si studia l'omogeneizzazione del sistema parabolico che governa tale flusso, e si dimostra la stabilità della derivazione al livello macroscopico.
@article{BUMI_2003_8_6B_2_a8,
     author = {Choquet, Catherine},
     title = {Homogenization of a one-dimensional model for compressible miscible flow in porous media},
     journal = {Bollettino della Unione matematica italiana},
     pages = {399--414},
     publisher = {mathdoc},
     volume = {Ser. 8, 6B},
     number = {2},
     year = {2003},
     zbl = {1177.76404},
     mrnumber = {1043964},
     language = {it},
     url = {https://geodesic-test.mathdoc.fr/item/BUMI_2003_8_6B_2_a8/}
}
TY  - JOUR
AU  - Choquet, Catherine
TI  - Homogenization of a one-dimensional model for compressible miscible flow in porous media
JO  - Bollettino della Unione matematica italiana
PY  - 2003
SP  - 399
EP  - 414
VL  - 6B
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BUMI_2003_8_6B_2_a8/
LA  - it
ID  - BUMI_2003_8_6B_2_a8
ER  - 
%0 Journal Article
%A Choquet, Catherine
%T Homogenization of a one-dimensional model for compressible miscible flow in porous media
%J Bollettino della Unione matematica italiana
%D 2003
%P 399-414
%V 6B
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BUMI_2003_8_6B_2_a8/
%G it
%F BUMI_2003_8_6B_2_a8
Choquet, Catherine. Homogenization of a one-dimensional model for compressible miscible flow in porous media. Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 2, pp. 399-414. https://geodesic-test.mathdoc.fr/item/BUMI_2003_8_6B_2_a8/

[1] Y. Amirat-K. Hamdache-A. Ziani, Homogénéisation d'un modèle d'écoulements miscibles en milieu poreux, Asymptotic Anal., 3 (1990), 77-89. | MR | Zbl

[2] Y. Amirat-K. Hamdache-A. Ziani, Homogenization of a model of compressible miscible flow in porous media, Boll. Un. Mat. Ital. B (7), 5 (1991), 463-487. | MR | Zbl

[3] Y. Amirat-A. Ziani, Global weak solutions for a parabolic system modeling a one-dimensional miscible flow in porous media, J. Math. Anal. Appl., 220 (1998), 697-718. | MR | Zbl

[4] A. Bourgeat-A. Mikelić, Homogenization of two-phase immiscible flows in a one-dimensional porous medium, Asymptotic Anal., 9 (1994), 359-380. | MR | Zbl

[5] J. Jr. Douglas-J. E. Roberts, Numerical methods for a model of compressible miscible displacement in porous media, Math. Comp., 41 (1983), 441-469. | MR | Zbl

[6] E. J. Koval, A method for predicting the performance of unstable miscible displacements in heterogeneous media, SPEJ trans. AIME, 228 (1963), 145-154.

[7] J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod/Gauthier-Villars, Paris, 1969. | MR | Zbl

[8] F. Murat, Compacité par compensation, Ann. Scuola Norm. Sup. Pisa (4), 5 (1978), 489-507. | fulltext mini-dml | MR | Zbl

[9] F. Murat, Soluciones renormalizadas de EDP elipticas no lineales, Prépublication du Laboratoire d'Analyse Numérique, Université de Paris 6, 93023, 1993.

[10] D. W. Peaceman, Fundamentals of Numerical Reservoir Simulation, Elsevier, 1977.

[11] A. E. Scheideger, The Physics of Flow through Porous Media, Univ. Toronto Press, 1974. | Zbl