Voir la notice de l'article dans Biblioteca Digitale Italiana di Matematica
@article{BUMI_2003_8_6B_2_a6, author = {Valent, Tullio}, title = {On the notion of potential for mappings between linear spaces. {A} generalized version of the {Poincar\'e} lemma}, journal = {Bollettino della Unione matematica italiana}, pages = {381--392}, publisher = {mathdoc}, volume = {Ser. 8, 6B}, number = {2}, year = {2003}, zbl = {1150.58001}, mrnumber = {442812}, language = {it}, url = {https://geodesic-test.mathdoc.fr/item/BUMI_2003_8_6B_2_a6/} }
TY - JOUR AU - Valent, Tullio TI - On the notion of potential for mappings between linear spaces. A generalized version of the Poincaré lemma JO - Bollettino della Unione matematica italiana PY - 2003 SP - 381 EP - 392 VL - 6B IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BUMI_2003_8_6B_2_a6/ LA - it ID - BUMI_2003_8_6B_2_a6 ER -
%0 Journal Article %A Valent, Tullio %T On the notion of potential for mappings between linear spaces. A generalized version of the Poincaré lemma %J Bollettino della Unione matematica italiana %D 2003 %P 381-392 %V 6B %N 2 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BUMI_2003_8_6B_2_a6/ %G it %F BUMI_2003_8_6B_2_a6
Valent, Tullio. On the notion of potential for mappings between linear spaces. A generalized version of the Poincaré lemma. Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 2, pp. 381-392. https://geodesic-test.mathdoc.fr/item/BUMI_2003_8_6B_2_a6/
[1] Variational formulation for every linear equation, Int. J. Engn. Sci., 12 (1974), 537-549. | MR | Zbl
,[2] On variational formulation for non-linear, non-potential operators, J. Inst. Maths. Appl., 24 (1979), 175-195. | MR | Zbl
,[3] On the variational formulation for linear initial value problems, Annali di Mat. Pura ed Applicata, 95 (1973), 331-359. | MR | Zbl
,[4] Variational formulation for every nonlinear problem, Int. J. Engn. Sci., 22, No. 11/12 (1984), 1343-1371. | MR | Zbl
,[5] Variational methods for the study of nonlinear operators, Holden-Day, New York (1964). | MR | Zbl
,[6] Boundary value problems of finite elasticity. Local theorems on existence, uniqueness, and analytic dependence on data, Springer-Verlag, New York (1988). | MR | Zbl
,