$\Gamma$-convergence of constrained Dirichlet functionals
Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 2, pp. 339-351.

Voir la notice de l'article dans Biblioteca Digitale Italiana di Matematica

Dato $\Omega\subset \mathbb{R}^{n}$ aperto, limitato e connesso, con frontiera Lipschitziana e volume $|\Omega|$, si prova che la successione $\mathcal{F}_{k}$ di funzionali di Dirichlet definiti in $H^{1}(\Omega; \mathbb{R}^{d})$, con vincoli di volume $v^{k}$ su $m\geq2$ insiemi di livello prescritti, tali che $\sum_{i=1}^{m}v_{i}^{k} |\Omega|$ per ogni $k$, $\Gamma$-converge, quando $v^{k}\rightarrow v$ con $\sum_{i=1}^{m}v_{i}^{k}=|\Omega|$, al quadrato della variazione totale in $BV(V; \mathbb{R}^{d})$, con vincoli di volume $v$ sui medesimi insiemi di livello.
@article{BUMI_2003_8_6B_2_a4,
     author = {Leonardi, Gian Paolo},
     title = {$\Gamma$-convergence of constrained {Dirichlet} functionals},
     journal = {Bollettino della Unione matematica italiana},
     pages = {339--351},
     publisher = {mathdoc},
     volume = {Ser. 8, 6B},
     number = {2},
     year = {2003},
     zbl = {1177.49026},
     mrnumber = {618549},
     language = {it},
     url = {https://geodesic-test.mathdoc.fr/item/BUMI_2003_8_6B_2_a4/}
}
TY  - JOUR
AU  - Leonardi, Gian Paolo
TI  - $\Gamma$-convergence of constrained Dirichlet functionals
JO  - Bollettino della Unione matematica italiana
PY  - 2003
SP  - 339
EP  - 351
VL  - 6B
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BUMI_2003_8_6B_2_a4/
LA  - it
ID  - BUMI_2003_8_6B_2_a4
ER  - 
%0 Journal Article
%A Leonardi, Gian Paolo
%T $\Gamma$-convergence of constrained Dirichlet functionals
%J Bollettino della Unione matematica italiana
%D 2003
%P 339-351
%V 6B
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BUMI_2003_8_6B_2_a4/
%G it
%F BUMI_2003_8_6B_2_a4
Leonardi, Gian Paolo. $\Gamma$-convergence of constrained Dirichlet functionals. Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 2, pp. 339-351. https://geodesic-test.mathdoc.fr/item/BUMI_2003_8_6B_2_a4/

[1] H. W. Alt-L. A. Caffarelli, Existence and regularity for a minimum problem with free boundary, J. Reine Angew. Math., 325 (1981), 105-144. | MR | Zbl

[2] L. Ambrosio, Corso introduttivo alla Teoria Geometrica della Misura ed alle superfici minime, Scuola Norm. Sup., Pisa, 1997. | MR | Zbl

[3] L. Ambrosio-I. Fonseca-P. Marcellini-L. Tartar, On a volume-constrained variational problem, Arch. Ration. Mech. Anal., 149 (1999), 23-47. | MR | Zbl

[4] L. Ambrosio-N. Fusco-D. Pallara, Functions of bounded variation and free discontinuity problems, The Clarendon Press Oxford University Press, New York, 2000. Oxford Science Publications. | MR | Zbl

[5] S. Baldo, Minimal interface criterion for phase transitions in mixtures of Cahn-Hilliard fluids, Ann. Inst. H. Poincare Anal. Non Lineaire, 7 (1990), 67-90. | fulltext mini-dml | MR | Zbl

[6] G. Dal Maso, An introduction to $\Gamma$-convergence, Birkhauser Boston Inc., Boston, MA, 1993. | MR | Zbl

[7] L. C. Evans-R. F. Gariepy, Lecture Notes on Measure Theory and Fine Properties of Functions, Studies in Advanced Math., CRC Press, Ann Harbor, 1992. | MR | Zbl

[8] L. R. Jr. Ford-D. R. Fulkerson, Flows in networks, Princeton University Press, Princeton, N.J., 1962. | MR | Zbl

[9] M. Giaquinta-G. Modica-J. Souček, Cartesian currents in the calculus of variations. I, cartesian currents. II, variational integrals, Springer-Verlag, Berlin, 1998. | MR | Zbl

[10] E. Giusti, Minimal surfaces and functions of bounded variation, Birkhauser, Boston-Basel-Stuttgart, 1984. | MR | Zbl

[11] M. E. Gurtin-D. Polignone-J. Viñals, Two-phase binary fluids and immiscible fluids described by an order parameter, Math. Models Methods Appl. Sci., 6 (1996), 815-831. | MR | Zbl

[12] F. Morgan, Geometric measure theory . A beginner's guide, Academic Press Inc., San Diego, CA, second ed., 1995. | MR | Zbl

[13] S. J. N. Mosconi-P. Tilli, Variational problems with several volume constraints on the level sets, preprint Scuola Norm. Sup. Pisa (2000). | Zbl

[14] E. Stepanov-P. Tilli, On the dirichlet problem with several volume constraints on the level sets, preprint Scuola Norm. Sup. Pisa, (2000). | MR | Zbl

[15] P. Tilli, On a constrained variational problem with an arbitrary number of free boundaries, Interfaces Free Bound., 2 (2000), 201-212. | MR | Zbl