Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2003_8_6B_2_a2, author = {Gabor, Grzegorz and Quincampoix, Marc}, title = {On existence of equilibria of set-valued maps}, journal = {Bollettino della Unione matematica italiana}, pages = {309--321}, publisher = {mathdoc}, volume = {Ser. 8, 6B}, number = {2}, year = {2003}, zbl = {1150.49007}, mrnumber = {755330}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BUMI_2003_8_6B_2_a2/} }
TY - JOUR AU - Gabor, Grzegorz AU - Quincampoix, Marc TI - On existence of equilibria of set-valued maps JO - Bollettino della Unione matematica italiana PY - 2003 SP - 309 EP - 321 VL - 6B IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BUMI_2003_8_6B_2_a2/ LA - en ID - BUMI_2003_8_6B_2_a2 ER -
Gabor, Grzegorz; Quincampoix, Marc. On existence of equilibria of set-valued maps. Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 2, pp. 309-321. https://geodesic-test.mathdoc.fr/item/BUMI_2003_8_6B_2_a2/
[1] Differential Inclusions, Springer, 1984. | MR | Zbl
- ,[2] Viability Theory, Birkhäuser, Boston, 1991. | MR | Zbl
,[3] Équilibres dans les ensembles nonconvexes, C. R. Acad. Sci. Paris Sér. I, 320 (1995), 573-576. | MR | Zbl
- ,[4] Equilibria of set-valued maps on nonconvex domains, Trans. Amer. Math. Soc., 349 (1997), 4159-4179. | MR | Zbl
- ,[5] Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Institut Fourier, Grenoble, 19, 1 (1969), 277-304. | fulltext mini-dml | MR | Zbl
,[6] The fixed point theory of multivalued mappings in topological vector spaces, Math. Ann., 177 (1968), 283-301. | MR | Zbl
,[7] The Lefschetz Fized Point Theorem, Scott, Foresman and Comp., Glenview Ill., London 1971. | MR | Zbl
,[8] Sufficient conditions of nonemptiness of the viability kernel, PhD Thesis, Chapter 8, Université Paris IX Dauphine, 1992. | MR | Zbl
,[9] Conditions suffisantes de non-vacuité du noyau de viabilité, C. R. Acad. Sci., Paris, Ser. I, 314, 11 (1992), 797-800. | MR | Zbl
,[10] Fixed points and equilibria in nonconvex sets, Nonlinear Analysis, 25 (1995), 145-161. | MR | Zbl
- - ,[11] Nonsmooth Analysis and Control Theory, Springer, 1998. | MR | Zbl
- - - ,[12] Paris avec handicaps et théorèmes de surjectivité de correspondances, C. R. Acad. Sc. Paris Sér. A, 281 (1975), 479-482. | MR | Zbl
,[13] Existence of (generalized) equilibria: necessary and sufficient conditions, Comm. Appl. Nonlinear Anal., 7 (2000), 21-53. | MR | Zbl
- ,[14] Equilibria of set-valued maps: variational approach, Nonlinear Anal. TMA (accepted). | Zbl
- ,[15] Topology, Allyn and Bacon, Inc., Boston, 1966. | MR | Zbl
,[16] Foundations of Algebraic Topology, Princeton Univ. Press, New Jersey, 1952. | MR | Zbl
- ,[17] Fixed point and minimax theorems in locally convex topological spaces, Proc. Nat. Acad. Sci. USA, 38 (1952), 121-126. | MR | Zbl
,[18] Some properties of convex sets related to fixed point theorems, Math. Ann., 266 (1984), 519-537. | MR | Zbl
,[19] Periodic solutions of functional differential inclusions and fixed points $\sigma$-selectionable correspondances, J. Math. Anal. Appl., 96 (1983), 295-312. | MR | Zbl
- ,[20] K. MISCHAIKOW-M. MROZEK-P. ZGLICZYŃSKI (editors), Conley index theory, Banach Center Publ., 47, PWN, Warszawa, 1999. | MR | Zbl
[21] Periodic and stationary trajectories of flows and ordinary differential equations, Zesz. Nauk. Uniw. Jagiellon. 860, Acta Math., 27 (1988), 29-37. | MR | Zbl
,[22] On the solution sets of differential inclusions, Boll. Un. Mat. Ital. (7), 6-A (1992), 387-394. | MR | Zbl
,[23] Frontières de domaines d'invariance et de viabilité pour les inclusions différentielles avec contraintes, C. R. Acad. Sci., Paris, 311 (1990), 411-416. | MR | Zbl
,[24] Differential inclusions and target problems, SIAM J. Control Optimization, 30 (1992), 324-335. | MR | Zbl
,[25] Periodic and bounded solutions in blocks for time periodic nonautonomous ordinary differential equations, Nonlinear Anal. TMA, 22 (1994), 707-737. | MR | Zbl
,[26] Lipschitz continuity of the value function in optimal control, J. Optimization Theory Appl., 94, 2 (1997), 335-361. | MR | Zbl
,