On existence of equilibria of set-valued maps
Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 2, pp. 309-321.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

The present paper is devoted to sufficient conditions for existence of equilibria of Lipschitz multivalued maps in prescribed subsets of finite-dimensional spaces. The main improvement of the present study lies in the fact that we do not suppose any regular assumptions on the boundary of the subset. Our approach is based on behaviour of trajectories to the corresponding differential inclusion.
L'articolo fornisce delle condizioni sufficienti per l' esistenza di punti di equilibrio di applicazioni multivoche Lipschitziane in assegnati sottoinsiemi di spazi finito-dimensionali. Il principale contributo del presente articolo consiste nel fatto che non si danno condizioni di regolarità sulla frontiera degli insiemi considerati. L'approccio è basato sullo studio del comportamento delle traiettorie della corrispondente inclusione differenziale.
@article{BUMI_2003_8_6B_2_a2,
     author = {Gabor, Grzegorz and Quincampoix, Marc},
     title = {On existence of equilibria of set-valued maps},
     journal = {Bollettino della Unione matematica italiana},
     pages = {309--321},
     publisher = {mathdoc},
     volume = {Ser. 8, 6B},
     number = {2},
     year = {2003},
     zbl = {1150.49007},
     mrnumber = {755330},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BUMI_2003_8_6B_2_a2/}
}
TY  - JOUR
AU  - Gabor, Grzegorz
AU  - Quincampoix, Marc
TI  - On existence of equilibria of set-valued maps
JO  - Bollettino della Unione matematica italiana
PY  - 2003
SP  - 309
EP  - 321
VL  - 6B
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BUMI_2003_8_6B_2_a2/
LA  - en
ID  - BUMI_2003_8_6B_2_a2
ER  - 
%0 Journal Article
%A Gabor, Grzegorz
%A Quincampoix, Marc
%T On existence of equilibria of set-valued maps
%J Bollettino della Unione matematica italiana
%D 2003
%P 309-321
%V 6B
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BUMI_2003_8_6B_2_a2/
%G en
%F BUMI_2003_8_6B_2_a2
Gabor, Grzegorz; Quincampoix, Marc. On existence of equilibria of set-valued maps. Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 2, pp. 309-321. https://geodesic-test.mathdoc.fr/item/BUMI_2003_8_6B_2_a2/

[1] J.-P. Aubin-A. Cellina, Differential Inclusions, Springer, 1984. | MR | Zbl

[2] J.-P. Aubin, Viability Theory, Birkhäuser, Boston, 1991. | MR | Zbl

[3] H. Ben-El-Mechaiekh-W. Kryszewski, Équilibres dans les ensembles nonconvexes, C. R. Acad. Sci. Paris Sér. I, 320 (1995), 573-576. | MR | Zbl

[4] H. Ben-El-Mechaiekh-W. Kryszewski, Equilibria of set-valued maps on nonconvex domains, Trans. Amer. Math. Soc., 349 (1997), 4159-4179. | MR | Zbl

[5] J. M. Bony, Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Institut Fourier, Grenoble, 19, 1 (1969), 277-304. | fulltext mini-dml | MR | Zbl

[6] F. Browder, The fixed point theory of multivalued mappings in topological vector spaces, Math. Ann., 177 (1968), 283-301. | MR | Zbl

[7] R. Brown, The Lefschetz Fized Point Theorem, Scott, Foresman and Comp., Glenview Ill., London 1971. | MR | Zbl

[8] P. Cardaliaguet, Sufficient conditions of nonemptiness of the viability kernel, PhD Thesis, Chapter 8, Université Paris IX Dauphine, 1992. | MR | Zbl

[9] P. Cardaliaguet, Conditions suffisantes de non-vacuité du noyau de viabilité, C. R. Acad. Sci., Paris, Ser. I, 314, 11 (1992), 797-800. | MR | Zbl

[10] F. Clarke-Yu. S. Ledyaev-R. J. Stern, Fixed points and equilibria in nonconvex sets, Nonlinear Analysis, 25 (1995), 145-161. | MR | Zbl

[11] F. Clarke-Yu. S. Ledyaev-R. J. Stern-P. R. Wolenski, Nonsmooth Analysis and Control Theory, Springer, 1998. | MR | Zbl

[12] B. Cornet, Paris avec handicaps et théorèmes de surjectivité de correspondances, C. R. Acad. Sc. Paris Sér. A, 281 (1975), 479-482. | MR | Zbl

[13] B. Cornet-M.-O. Czarnecki, Existence of (generalized) equilibria: necessary and sufficient conditions, Comm. Appl. Nonlinear Anal., 7 (2000), 21-53. | MR | Zbl

[14] A. Ćwiszewski-W. Kryszewski, Equilibria of set-valued maps: variational approach, Nonlinear Anal. TMA (accepted). | Zbl

[15] J. Dugundji, Topology, Allyn and Bacon, Inc., Boston, 1966. | MR | Zbl

[16] S. Eilenberg-N. Steenrod, Foundations of Algebraic Topology, Princeton Univ. Press, New Jersey, 1952. | MR | Zbl

[17] K. Fan, Fixed point and minimax theorems in locally convex topological spaces, Proc. Nat. Acad. Sci. USA, 38 (1952), 121-126. | MR | Zbl

[18] K. Fan, Some properties of convex sets related to fixed point theorems, Math. Ann., 266 (1984), 519-537. | MR | Zbl

[19] G. Haddad-J. M. Lasry, Periodic solutions of functional differential inclusions and fixed points $\sigma$-selectionable correspondances, J. Math. Anal. Appl., 96 (1983), 295-312. | MR | Zbl

[20] K. MISCHAIKOW-M. MROZEK-P. ZGLICZYŃSKI (editors), Conley index theory, Banach Center Publ., 47, PWN, Warszawa, 1999. | MR | Zbl

[21] M. Mrozek, Periodic and stationary trajectories of flows and ordinary differential equations, Zesz. Nauk. Uniw. Jagiellon. 860, Acta Math., 27 (1988), 29-37. | MR | Zbl

[22] S. Plaskacz, On the solution sets of differential inclusions, Boll. Un. Mat. Ital. (7), 6-A (1992), 387-394. | MR | Zbl

[23] M. Quincampoix, Frontières de domaines d'invariance et de viabilité pour les inclusions différentielles avec contraintes, C. R. Acad. Sci., Paris, 311 (1990), 411-416. | MR | Zbl

[24] M. Quincampoix, Differential inclusions and target problems, SIAM J. Control Optimization, 30 (1992), 324-335. | MR | Zbl

[25] R. Srzednicki, Periodic and bounded solutions in blocks for time periodic nonautonomous ordinary differential equations, Nonlinear Anal. TMA, 22 (1994), 707-737. | MR | Zbl

[26] V. Veliov, Lipschitz continuity of the value function in optimal control, J. Optimization Theory Appl., 94, 2 (1997), 335-361. | MR | Zbl