Quasimonotone systems of higher order
Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 2, pp. 459-480.

Voir la notice de l'article dans Biblioteca Digitale Italiana di Matematica

Consideriamo sistemi nonlineari quasimonotoni di tipo di divergenza di ordine alto con crescenza di ordine $p$, $p\geq 2$ e coefficienti di Dini continui. Usando la tecnica dell'approssimazione armonica, diamo una dimostrazione diretta per la regolarità parziale di soluzioni deboli.
@article{BUMI_2003_8_6B_2_a11,
     author = {Kronz, Manfred},
     title = {Quasimonotone systems of higher order},
     journal = {Bollettino della Unione matematica italiana},
     pages = {459--480},
     publisher = {mathdoc},
     volume = {Ser. 8, 6B},
     number = {2},
     year = {2003},
     zbl = {1150.35385},
     mrnumber = {167862},
     language = {it},
     url = {https://geodesic-test.mathdoc.fr/item/BUMI_2003_8_6B_2_a11/}
}
TY  - JOUR
AU  - Kronz, Manfred
TI  - Quasimonotone systems of higher order
JO  - Bollettino della Unione matematica italiana
PY  - 2003
SP  - 459
EP  - 480
VL  - 6B
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BUMI_2003_8_6B_2_a11/
LA  - it
ID  - BUMI_2003_8_6B_2_a11
ER  - 
%0 Journal Article
%A Kronz, Manfred
%T Quasimonotone systems of higher order
%J Bollettino della Unione matematica italiana
%D 2003
%P 459-480
%V 6B
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BUMI_2003_8_6B_2_a11/
%G it
%F BUMI_2003_8_6B_2_a11
Kronz, Manfred. Quasimonotone systems of higher order. Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 2, pp. 459-480. https://geodesic-test.mathdoc.fr/item/BUMI_2003_8_6B_2_a11/

[C1] S. Campanato, Proprietà di una famiglia di spazi funzionali, Ann. Scuola Norm. Sup. Pisa 18 (1964), 137-160. | fulltext mini-dml | MR | Zbl

[C2] S. Campanato, Teoremi di interpolazione per tranformazioni che applicano $L^p$ in $C^{h,\alpha}$, Ann. Scuola Norm. Sup. Pisa, 18 (1964), 345-360. | fulltext mini-dml | MR | Zbl

[C3] S. Campanato, Equazioni ellitichi del IIe ordine e spazi $\mathcal{L}^{2,\lambda}$, Ann. Mat. Pura Appl., 69 (1965), 321-381. | MR | Zbl

[C4] S. Campanato, Alcune osservazioni relative alle soluzioni di equazioni ellittiche di ordine $2m$, Atti Convegno Equaz. Der. Parz., Bologna, 1967, 17-25. | MR

[DS] F. Duzaar-K. Steffen, Optimal interior and boundary regularity for almost minimizers to elliptic variational integrals, Preprint. | MR | Zbl

[DGG] F. Duzaar-A. Gastel-J. Grotowski, Optimal partial regularity for nonlinear elliptic systems of higher order, Preprint. | MR | Zbl

[E] L. C. Evans, Quasiconvexitity and Partial Regularity in the Calculus of Variations, Arch. Rat. Mech. Anal., 95 (1986), 227-252. | MR | Zbl

[F] M. Fuchs, Regularity theorems for nonlinear systems of partial differential equations under natural ellipticity conditions, Analysis 7 (1987), 83-93. | MR | Zbl

[Gi] M. Giaquinta, Introduction to Regularity Theory for Nonlinear Elliptic Systems, Basel-Boston-Berlin, Birkhäuser, 1993. | MR | Zbl

[Gu] M. Guidorzi, A Remark on Partial Regularity of Minimizers of Quasiconvex Integrals of Higher Order, Rend. Istit. Mat. Univ. Trieste, 32 (2000), 1-24. | MR | Zbl

[GM1] M. Giaquinta-G. Modica, Almost-everywhere regularity results for solutions of nonlinear elliptic systems, Manuscripta Math., 28 (1979), 109-158. | MR | Zbl

[GM2] M. Giaquinta-G. Modica, Partial regularity of minimizers of quasiconvex integrals, Ann. Inst. Henri Poincaré, Analyse non linéaire, 3 (1986), 185-208. | fulltext mini-dml | MR | Zbl

[H] C. Hamburger, Quasimonotonicity, regularity and duality for nonlinear systems of partial differential equations, Ann. Mat. Pura Appl., IV. Ser., 169 (1995), 321-354. | MR | Zbl

[K] M. Kronz, Partial Regularity Results for Quasiconvex Functionals of Higher Order, Ann. Inst. Henri Poincaré, Analyse non linéaire, 19 (2002), 81-112. | fulltext mini-dml | MR | Zbl

[M] N. G. Meyers, Quasi-Convexity and Lower Semi-Continuity of Multiple Variational Integrals of Any Order, Trans. Am. Math. Soc., 119 (1965), 125-149. | MR | Zbl

[S] L. Simon, Theorems on Regularity and Singularity of Energy Minimizing Maps, Basel-Boston-Berlin, Birkhäuser, 1996. | MR | Zbl

[Z] Ke-Wei Zhang, On the Dirichlet problem for a class of quasilinear elliptic systems of partial differential equations in divergence form, Partial differential equations, Proc. Symp., Tianjin/China, 1986, Lect. Notes Math., 1306 (1988), 262-277. | MR | Zbl