The $p$-Laplacian in domains with small random holes
Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 2, pp. 435-458.

Voir la notice de l'article dans Biblioteca Digitale Italiana di Matematica

Attraverso un metodo variazionale, si studia un processo di omogeneizzazione relativo al $p$-Laplaciano in regioni perforate in maniera stocastica. Per particolari distribuzioni aleatorie dei buchi si caratterizza pienamente il problema limite.
@article{BUMI_2003_8_6B_2_a10,
     author = {Balzano, M. and Durante, T.},
     title = {The $p${-Laplacian} in domains with small random holes},
     journal = {Bollettino della Unione matematica italiana},
     pages = {435--458},
     publisher = {mathdoc},
     volume = {Ser. 8, 6B},
     number = {2},
     year = {2003},
     zbl = {1177.35061},
     mrnumber = {1008342},
     language = {it},
     url = {https://geodesic-test.mathdoc.fr/item/BUMI_2003_8_6B_2_a10/}
}
TY  - JOUR
AU  - Balzano, M.
AU  - Durante, T.
TI  - The $p$-Laplacian in domains with small random holes
JO  - Bollettino della Unione matematica italiana
PY  - 2003
SP  - 435
EP  - 458
VL  - 6B
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BUMI_2003_8_6B_2_a10/
LA  - it
ID  - BUMI_2003_8_6B_2_a10
ER  - 
%0 Journal Article
%A Balzano, M.
%A Durante, T.
%T The $p$-Laplacian in domains with small random holes
%J Bollettino della Unione matematica italiana
%D 2003
%P 435-458
%V 6B
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BUMI_2003_8_6B_2_a10/
%G it
%F BUMI_2003_8_6B_2_a10
Balzano, M.; Durante, T. The $p$-Laplacian in domains with small random holes. Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 2, pp. 435-458. https://geodesic-test.mathdoc.fr/item/BUMI_2003_8_6B_2_a10/

[1] M. Balzano, Random Relaxed Dirichlet Problems, Ann. Mat. Pura Appl. (IV), 153 (1988), 133-174. | MR | Zbl

[2] M. Balzano-A. Corbo Esposito-G. Paderni, Nonlinear Dirichlet problems in randomly perforated domains, Rendiconti di Matematica e delle sue Appl., 17 (1997), 163-186. | MR | Zbl

[3] M. Balzano-L. Notarantonio, On the asymptotic behaviour of Dirichlet problems in a Riemannian manifold less small random holes, Rend. Sem. Mat. Univ. Padova, 100 (1998). | fulltext mini-dml | MR | Zbl

[4] J. R. Baxter-N. C. Jain, Asymptotic capacities for finely divided bodies and stopped diffusions, Illinois J. Math., 31 (1987), 469-495. | fulltext mini-dml | MR | Zbl

[5] G. Dal Maso, Comportamento asintotico delle soluzioni di problemi di Dirichlet, Conference XV Congress U.M.I. (Padova, Italy) 1995 - Boll. Un. Mat. Ital. (7), 11-A (1997), 253-277. | MR | Zbl

[6] G. Dal Maso-A. Defranceschi, Limits of nonlinear Dirichlet problems in varying domains, Manuscripta Math., 61 (1988), 251-278. | MR | Zbl

[7] R. Figari-E. Orlandi-A. Teta, The Laplacian in regions with many small obstacles: fluctuation aroun the limit operator, J. Statist. Phys., 41 (1985), 465-487. | MR | Zbl

[8] J. Heinonen-T. Kilpeläinen, $A$-superharmonic functions and supersolutions of degenerate ellipitic equations, Arkiv för Matematik, 26 (1988), 87-105. | MR | Zbl

[9] J. Heinonen-T. Kilpeläinen-O. Martio, Nonlinear potential theory of degenerate ellipitic equations, Oxford Mathematical Monographs - Clarendon Press, 1993. | MR | Zbl

[10] M. Kac, Probabilistic methods in some problems of scattering theory, Rocky Mountain J. Math., 4 (1974), 511-538. | fulltext mini-dml | MR | Zbl

[11] S. Ozawa, Random media and the eigenvalues of the Laplacian, Comm. Math. Phys., 94 (1984), 421-437. | fulltext mini-dml | MR | Zbl

[12] G. C. Papanicolaou-S. R. S. Varadhan, Diffusion in regions with many small holes, Stochastic Differential Systems, Filtering and Control. Proc. of the IFIPWG 7/1 Working Conference (Vilnius, Lithuania, 1978), 190-206. Lectures Notes in Control and Information Sci., 25, Springer-Verlag, Berlin (1980). | MR | Zbl

[13] W. P. Ziemer, Weakly Differentiable Functions, Springer-Verlag, 1989. | MR | Zbl