Adaptive convex optimization in Banach spaces: a multilevel approach
Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 2, pp. 263-287.

Voir la notice de l'article dans Biblioteca Digitale Italiana di Matematica

In questo articolo, a prevalente carattere di rassegna, si considerano varie applicazioni del concetto di Approssimazione Nonlineare alla minimizzazione convessa adattativa. Dapprima, si ricordano alcuni concetti di base e si confrontano l'approssimazione lineare e quella nonlineare nel caso di tre basi funzionali notevoli: la base di Fourier, le basi degli elementi finiti e le basi di ondine. Successivamente, indichiamo come l'approssimazione nonlineare possa essere usata nella definizione di metodi adattativi per la risoluzione di problemi di minimizzazione astratta in spazi di Banach. Gli algoritmi risultanti, che impiegano sia basi di ondine sia basi di elementi finiti, risultano rigorosamente giustificabili e con proprietà di ottimalità dal punto di vista dell'efficienza. In questo ambito, si descrive con un qualche dettaglio un algoritmo di «steepest-descent» per discretizzazioni in ondine.
@article{BUMI_2003_8_6B_2_a0,
     author = {Canuto, Claudio},
     title = {Adaptive convex optimization in {Banach} spaces: a multilevel approach},
     journal = {Bollettino della Unione matematica italiana},
     pages = {263--287},
     publisher = {mathdoc},
     volume = {Ser. 8, 6B},
     number = {2},
     year = {2003},
     zbl = {1177.42028},
     mrnumber = {1860970},
     language = {it},
     url = {https://geodesic-test.mathdoc.fr/item/BUMI_2003_8_6B_2_a0/}
}
TY  - JOUR
AU  - Canuto, Claudio
TI  - Adaptive convex optimization in Banach spaces: a multilevel approach
JO  - Bollettino della Unione matematica italiana
PY  - 2003
SP  - 263
EP  - 287
VL  - 6B
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BUMI_2003_8_6B_2_a0/
LA  - it
ID  - BUMI_2003_8_6B_2_a0
ER  - 
%0 Journal Article
%A Canuto, Claudio
%T Adaptive convex optimization in Banach spaces: a multilevel approach
%J Bollettino della Unione matematica italiana
%D 2003
%P 263-287
%V 6B
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BUMI_2003_8_6B_2_a0/
%G it
%F BUMI_2003_8_6B_2_a0
Canuto, Claudio. Adaptive convex optimization in Banach spaces: a multilevel approach. Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 2, pp. 263-287. https://geodesic-test.mathdoc.fr/item/BUMI_2003_8_6B_2_a0/

[1] A. Barinka-T. Barsch-Ph. Charton-A. Cohen-S. Dahlke-W. Dahmen-K. Urban, Adaptive wavelet schemes for elliptic problems - implementation and numerical experiments, SIAM J. Sci. Comput., 23 (2001), 910-939. | MR | Zbl

[2] C. Bernardi-Y. Maday, Spectral Methods, pp. 209-486 in Handbook of Numerical Analysis, Vol. V (Ph.G. Ciarlet and J.L. Lions, eds.), North Holland, Amsterdam, 1997. | MR

[3] S. Berrone-L. Emmel, A realization of a wavelet Galerkin method on non-trivial domains, Math. Models Meth. Appl. Sci., 12 (2002), 1525-1554. | MR | Zbl

[4] S. Bertoluzza, A posteriori error estimates for the wavelet Galerkin method, Appl. Math. Lett., 8 (1995), 1-6. | MR | Zbl

[5] S. Bertoluzza-S. Mazet-M. Verani, A nonlinear Richardson algorithm for the solution of elliptic PDE's, Pubbl. IAN-CNR n. 1227, Pavia (2001). | Zbl

[6] S. Bertoluzza-M. Verani, Convergence of a non-linear wavelet algorithm for the solution of PDE's, Pubbl. IAN-CNR n. 1205, Pavia (2001), to appear in Appl. Math. Lett. | MR | Zbl

[7] S. Binev-W. Dahmen-R. A. Devore, Adaptive finite element methods with convergence rates, IGPM Report No. 219, RWTH Aachen, June 2002. | Zbl

[8] C. Canuto-I. Cravero, A wavelet-based adaptive finite element method for the advection-diffusion equations, Math. Models Meths. Appl. Sci., 7 (1997), 265-289. | MR | Zbl

[9] C. Canuto-M. Y. Hussaini-A. Quarteroni-T. A. Zang, Spectral Methods in Fluid Dynamics, Springer, New York, 1990. | MR | Zbl

[10] C. Canuto-A. Tabacco-K. Urban, The Wavelet Element Method Part I: construction and analysis, Appl. Comput. Harm. Anal., 6 (1999), 1-52. | MR | Zbl

[11] C. Canuto-A. Tabacco-K. Urban, The Wavelet Element Method Part II: realization and additional features in 2D and 3D, Appl. Comp. Harm. Anal., 8 (2000), 123-165. | MR | Zbl

[12] C. Canuto-K. Urban, Adaptive optimization of convex functionals in Banach spaces, in preparation. | Zbl

[13] J. Céa, Optimisation, théorie et algorithmes, Dunod, Paris, 1971. | MR | Zbl

[14] Ph. G. Ciarlet, Basic Error Estimates for Elliptic Problems, pp. 17-352 in Handbook of Numerical Analysis, Vol. II (Ph. G. Ciarlet and J. L. Lions, eds.), North Holland, Amsterdam, 1991. | MR | Zbl

[15] A. Cohen, Wavelet Methods in Numerical Analysis, pp. 417-711 in Handbook of Numerical Analysis, Vol. VII (Ph.G. Ciarlet and J. L. Lions, eds.), North Holland, Amsterdam, 2000. | MR | Zbl

[16] A. Cohen-W. Dahmen-R. A. Devore, Adaptive wavelet methods for elliptic operator equations - convergence rates, Math. Comput., 70 (2001), 27-75. | MR | Zbl

[17] A. Cohen-W. Dahmen-R. A. Devore, Adaptive wavelet methods II - beyond the elliptic case, Found. Comput. Math., 2 (2002), 203-245. | MR | Zbl

[18] A. Cohen-W. Dahmen-R. A. Devore, Adaptive Wavelet Schemes for Nonlinear Variational Problems, IGPM Report No. 221, RWTH Aachen, June 2002. | Zbl

[19] A. Cohen-I. Daubechies-J. Feauveau, Biorthogonal bases of compactly supported wavelet, Comm. Pure Appl. Math., 45 (1992), 485-560. | MR | Zbl

[20] A. Cohen-I. Daubechies-P. Vial, Wavelets on the interval and fast wavelet transform, Appl. Comp. Harm. Anal., 1 (1993), 54-81. | MR | Zbl

[21] S. Dahlke, Besov regularity for elliptic boundary value problems on polygonal domains, Appl. Math. Lett., 12 (1999), 31-36. | MR | Zbl

[22] S. Dahlke-W. Dahmen-R. Hochmuth-R. Schneider, Stable multiscale bases and local error estimation for elliptic problems, Appl. Numer. Math., 23 (1997), 21-48. | MR | Zbl

[23] S. Dahlke-W. Dahmen-K. Urban, Adaptive wavelet methods for saddle point problems - optimal convergence rates, IGPM Report No. 204, RWTH Aachen, 2001, to appear in SIAM J. Numer. Anal. | MR | Zbl

[24] S. Dahlke-R. A. Devore, Besov regularity for elliptic boundary value problems, Commun. Partial Diff. Eqns., 22 (1997), 1-16. | MR | Zbl

[25] W. Dahmen-A. Kunoth-K. Urban, Biorthogonal spline-wavelets on the interval - Stability and moment conditions, Appl. Comp. Harm. Anal., 6 (1999), 132-196. | MR | Zbl

[26] W. Dahmen-R. Schneider, Wavelets on manifolds I. Construction and domain decompositions, SIAM J. Math. Anal., 31 (1999), 184-230. | MR | Zbl

[27] W. Dahmen-R. Schneider, Composite wavelet bases for operator equations, Math. Comp., 68 (1999), 1533-1567. | MR | Zbl

[28] I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Series in Applied Mathematics 61, SIAM, Philadelphia, 1992. | MR | Zbl

[29] R. A. Devore, Nonlinear Approximation, pp. 51-150 in Acta Numerica 1998, Cambridge University Press, Cambridge, 1998. | MR | Zbl

[30] R. A. Devore-B. J. Lucier, Wavelets, pp. 1-56 in Acta Numerica 1992, Cambridge University Press, Cambridge, 1992. | MR | Zbl

[31] W. Dörfler, A convergent adaptive algorithm for Poisson's equation, SIAM J. Numer. Anal., 33 (1996), 1106-1124. | MR | Zbl

[32] S. Grivet Talocia-A. Tabacco, Wavelets on the interval with optimal localization, Math. Models Meth. Appl. Sci., 10 (2000), 441-462. | MR | Zbl

[33] A. Haar, Zur Theorie der orthogonalen Funktionen-Systeme, Math. Ann., 69 (1910), 331-371. | Jbk 41.0469.03 | MR

[34] P. Morin-R. Nochetto-K. Siebert, Data oscillation and convergence of adaptive FEM, SIAM J. Numer. Anal., 38 (2000), 466-488. | MR | Zbl

[35] C. Schwab, $p$- and $hp$-Finite Element Methods, Clarendon Press, Oxford, 1998. | MR | Zbl

[36] V. N. Temlyakov, The best $m$-term approximation and greedy algorithms, Adv. Comput. Math., 8 (1998), pp. 249-265. | MR | Zbl

[37] R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh Refinement Techniques, Wiley-Teubner, Chichester, 1996. | Zbl