Existence and boundedness of minimizers of a class of integral functionals
Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 1, pp. 125-139.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In this paper we consider a class of integral functionals whose integrand satisfies growth conditions of the type \begin{gather*} f(x, \eta, \xi) \geq a(x) \frac{|\xi|^{p}}{(1 + |\eta|)^{\alpha}} - b_{1}(x)|\eta|^{\beta_{1}}-g_{1}(x),\\ f(x, \eta, 0)\leq b_{2}(x)|\eta|^{\beta_{2}}+ g_{2}(x), \end{gather*} where 0α, 1β1p, 0β2p, α+βip, a(x), bi(x), gi(x) (i=1, 2) are nonnegative functions satisfying suitable summability assumptions. We prove the existence and boundedness of minimizers of such a functional in the class of functions belonging to the weighted Sobolev space W1,p(a) , which assume a boundary datum u0W1,p(a)L(Ω).
In questo lavoro si considera una classe di funzionali integrali, il cui integrando verifica le seguenti condizioni \begin{gather*} f(x, \eta, \xi) \geq a(x) \frac{|\xi|^{p}}{(1 + |\eta|)^{\alpha}} - b_{1}(x)|\eta|^{\beta_{1}}-g_{1}(x),\\ f(x, \eta, 0)\leq b_{2}(x)|\eta|^{\beta_{2}}+ g_{2}(x), \end{gather*} dove 0α, 1β1p, 0β2p, α+βip, a(x), bi(x), gi(x) (i=1, 2) sono funzioni non negative che soddisfano opportune ipotesi di sommabilità. Si dimostra l'esistenza e la limitatezza di minimi di tali funzionali nella classe di funzioni appartenenti allo spazio di Sobolev pesato W1,p(a), che assumono un assegnato dato al bordo u0W1,p(a)L(Ω).
@article{BUMI_2003_8_6B_1_a6,
     author = {Mercaldo, A.},
     title = {Existence and boundedness of minimizers of a class of integral functionals},
     journal = {Bollettino della Unione matematica italiana},
     pages = {125--139},
     publisher = {mathdoc},
     volume = {Ser. 8, 6B},
     number = {1},
     year = {2003},
     zbl = {1150.49001},
     mrnumber = {1645729},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BUMI_2003_8_6B_1_a6/}
}
TY  - JOUR
AU  - Mercaldo, A.
TI  - Existence and boundedness of minimizers of a class of integral functionals
JO  - Bollettino della Unione matematica italiana
PY  - 2003
SP  - 125
EP  - 139
VL  - 6B
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BUMI_2003_8_6B_1_a6/
LA  - en
ID  - BUMI_2003_8_6B_1_a6
ER  - 
%0 Journal Article
%A Mercaldo, A.
%T Existence and boundedness of minimizers of a class of integral functionals
%J Bollettino della Unione matematica italiana
%D 2003
%P 125-139
%V 6B
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BUMI_2003_8_6B_1_a6/
%G en
%F BUMI_2003_8_6B_1_a6
Mercaldo, A. Existence and boundedness of minimizers of a class of integral functionals. Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 1, pp. 125-139. https://geodesic-test.mathdoc.fr/item/BUMI_2003_8_6B_1_a6/

[AFT] A. Alvino-V. Ferone-G. Trombetti, A priori estimates for a class of non uniformly elliptic equations, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), 381-391. | MR | Zbl

[BO] L. Boccardo-L. Orsina, Existence and regularity of minima for integral functionals noncoercive in the energy space, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 25 (1997), 95-130. | fulltext mini-dml | MR | Zbl

[BDO] L. Boccardo-A. Dall'Aglio, L. Orsina, Existence and regularity results for some elliptic equations with degenerate coercivity, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), 51-58. | MR | Zbl

[C1] A. Cianchi, Local minimizers and rearrangements, Appl. Math. Optim., 27 (1993), 261-274. | MR | Zbl

[C2] A. Cianchi, Boundedness of solutions to variational problems under general growth conditions, Comm. Partial Differential Equations, 22 (1997), 1629-1646. | MR | Zbl

[CS] A. Cianchi-R. Schianchi, A priori sharp estimates for minimizers, Boll. Un. Mat. Ital., 7-B (1993), 821-831. | MR | Zbl

[DG] E. De Giorgi, Teoremi di semicontinuità nel calcolo delle variazioni, Lectures Notes, INDAM 1968.

[GP1] D. Giachetti-M. M. Porzio, Existence results for some non uniformly elliptic equations with irregular data, J. Math. Anal. Appl., 257 (2001), 100-130. | MR | Zbl

[GP2] D. Giachetti-M. M. Porzio, Regularity results for some elliptic equations with degenerate coercivity, Preprint.

[G] E. Giusti, Metodi diretti nel calcolo delle Variazioni, UMI, 1994. | MR

[LU] O. A. Ladyzenskaya-N. N. Ural'Ceva, Equations aux dérivées partielles de type elliptic, Dunod, Paris, 1968. | Zbl

[M] V. Maz'Ja, Sobolev spaces, Springer-Verlag, Berlin (1985). | MR

[Me] A. Mercaldo, Boundedness of minimizers of degenerate functionals, Differential Integral Equations, 9 (1996), 541-556. | MR | Zbl

[MS] M. K. V. Murthy-G. Stampacchia, Boundary value problems for some degenerate elliptic operators, Ann. Mat. Pura Appl., 90 (1971), 1-122. | MR | Zbl

[S] R. Schianchi, An $L^\infty$-estimates for the minima of functionals of the calculus of variations., Differential Integral Equations, 2 (1989), 383-421. | MR | Zbl

[T] G. Talenti, Boundedeness of minimizers, Hokkaido Math. Jour., 19 (1990), 259-279. | MR | Zbl

[Tr] C. Trombetti, Existence and regularity for a class of non uniformly elliptic equations in two dimensions, Differential Integral Equations, 13 (2000), 687-706. | MR | Zbl