θ-curves inducing two different knots with the same 2-fold branched covering spaces
Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 1, pp. 199-209.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

For a knot K with a strong inversion i induced by an unknotting tunnel, we have a double covering projection Π:S3S3/i branched over a trivial knot Π(fix(i)), where fix(i) is the axis of i. Then a set Π(fix(i)K) is called a θ-curve. We construct θ-curves and the Z2Z2 cyclic branched coverings over θ-curves, having two non-isotopic Heegaard decompositions which are one stable equivalent.
Per un nodo K con un'inversione forte i indotta da un tunnel di scioglimento abbiamo una proiezione Π:S3S3/i che è un ricoprimento doppio ramificato sopra un nodo banale Π(fix(i)), dove fix(i) è l'asse i. Allora un insieme Π(fix(i)K) è chiamato θ-curva. Costruiamo θ-curve e i ricoprimenti Z2Z2 ciclici ramificati sopra θ-curve, che hanno due decomposizioni di Heegaard non isotopiche che sono uno stabilmente equivalenti.
@article{BUMI_2003_8_6B_1_a11,
     author = {Kim, Soo Hwan and Kim, Yangkok},
     title = {$\theta$-curves inducing two different knots with the same $2$-fold branched covering spaces},
     journal = {Bollettino della Unione matematica italiana},
     pages = {199--209},
     publisher = {mathdoc},
     volume = {Ser. 8, 6B},
     number = {1},
     year = {2003},
     zbl = {1150.57002},
     mrnumber = {431175},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BUMI_2003_8_6B_1_a11/}
}
TY  - JOUR
AU  - Kim, Soo Hwan
AU  - Kim, Yangkok
TI  - $\theta$-curves inducing two different knots with the same $2$-fold branched covering spaces
JO  - Bollettino della Unione matematica italiana
PY  - 2003
SP  - 199
EP  - 209
VL  - 6B
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BUMI_2003_8_6B_1_a11/
LA  - en
ID  - BUMI_2003_8_6B_1_a11
ER  - 
%0 Journal Article
%A Kim, Soo Hwan
%A Kim, Yangkok
%T $\theta$-curves inducing two different knots with the same $2$-fold branched covering spaces
%J Bollettino della Unione matematica italiana
%D 2003
%P 199-209
%V 6B
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BUMI_2003_8_6B_1_a11/
%G en
%F BUMI_2003_8_6B_1_a11
Kim, Soo Hwan; Kim, Yangkok. $\theta$-curves inducing two different knots with the same $2$-fold branched covering spaces. Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 1, pp. 199-209. https://geodesic-test.mathdoc.fr/item/BUMI_2003_8_6B_1_a11/

[1] J. S. Birman-E. Gonzalez-Acuña-J. M. Montesinos, Heegaard splittings of prime $3$-manifolds are not unique, Michingan Math. J., 23 (1976), 97-103. | fulltext mini-dml | MR | Zbl

[2] J. S. Birman-H. M. Hilden, Heegaard splittings of branched coverings of $S^3$, Trans. Amer. Math. Soc., 270 (1975), 315-352. | MR | Zbl

[3] A. Casson-C. Mca. Gordon, Reducing Heegaard splittings, Topology and its applications, 27 (1987), 273-275. | MR | Zbl

[4] M. J. Dunwoody, Cyclic presentations and $3$-manifolds, Proceedings of Groups- Korea 94' (edited by A. C. Kim and D. L. Johnson) (1979), 47-55. | MR | Zbl

[5] Y. H. Im-S. H. Kim, Heegaard splittings of the Brieskorn homology spheres that are equivalent after one stabilization, Note di Mathematica, 20 (1) (2000/2001), 53-63. | MR | Zbl

[6] T. Kobayashi, A construction of 3-manifolds whose homeomorphism classes of Heegaard splittings have polynomial growth, Osaka Journal of Math., 29 (1992), 653-674. | fulltext mini-dml | MR | Zbl

[7] K. Morimoto-M. Sakuma-Y. Yokota, Identifying tunnel number one knots, J. Math. Soc. Japan, 48 (4) (1996), 667-688. | fulltext mini-dml | MR | Zbl

[8] M. Nakao, On the $\mathbb{Z}_2 \oplus \mathbb{Z}_2$ branched coverings of spatial $K_4$-graphs, Knots 90 (by Walter de Gruyter), Berlin New York (1992), 103-116. | MR | Zbl

[9] E. Sedwick, An infinite collection of Heegaard splittings that are equivalent after one stabilization, Mathematisch Annalen, 308 (1997), 65-72. | MR | Zbl

[10] H. J. Song-S. H. Kim, Dunwoody $3$-manifolds and $(1,1)$-decomposiable knots, Proc. Workshop in pure math (edited by Jongsu Kim and Sungbok Hong), Geometry and Topology, 19 (2000), 193-211.

[11] M. Takahashi, Two knots with the same $2$-fold branched covering space, Yokohama Math. J., 25 (1977), 91-99. | MR | Zbl

[12] K. Wolcott, The knotting of theta curves and other graphs in $S^3$, in Geometry and Topology (edited by McCrory and T. Shlfrin) Marcel Dekker, New York (1987) 325-346. | MR | Zbl