Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2003_8_6B_1_a11, author = {Kim, Soo Hwan and Kim, Yangkok}, title = {$\theta$-curves inducing two different knots with the same $2$-fold branched covering spaces}, journal = {Bollettino della Unione matematica italiana}, pages = {199--209}, publisher = {mathdoc}, volume = {Ser. 8, 6B}, number = {1}, year = {2003}, zbl = {1150.57002}, mrnumber = {431175}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BUMI_2003_8_6B_1_a11/} }
TY - JOUR AU - Kim, Soo Hwan AU - Kim, Yangkok TI - $\theta$-curves inducing two different knots with the same $2$-fold branched covering spaces JO - Bollettino della Unione matematica italiana PY - 2003 SP - 199 EP - 209 VL - 6B IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BUMI_2003_8_6B_1_a11/ LA - en ID - BUMI_2003_8_6B_1_a11 ER -
%0 Journal Article %A Kim, Soo Hwan %A Kim, Yangkok %T $\theta$-curves inducing two different knots with the same $2$-fold branched covering spaces %J Bollettino della Unione matematica italiana %D 2003 %P 199-209 %V 6B %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BUMI_2003_8_6B_1_a11/ %G en %F BUMI_2003_8_6B_1_a11
Kim, Soo Hwan; Kim, Yangkok. $\theta$-curves inducing two different knots with the same $2$-fold branched covering spaces. Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 1, pp. 199-209. https://geodesic-test.mathdoc.fr/item/BUMI_2003_8_6B_1_a11/
[1] Heegaard splittings of prime $3$-manifolds are not unique, Michingan Math. J., 23 (1976), 97-103. | fulltext mini-dml | MR | Zbl
- - ,[2] Heegaard splittings of branched coverings of $S^3$, Trans. Amer. Math. Soc., 270 (1975), 315-352. | MR | Zbl
- ,[3] Reducing Heegaard splittings, Topology and its applications, 27 (1987), 273-275. | MR | Zbl
- ,[4] Cyclic presentations and $3$-manifolds, Proceedings of Groups- Korea 94' (edited by A. C. Kim and D. L. Johnson) (1979), 47-55. | MR | Zbl
,[5] Heegaard splittings of the Brieskorn homology spheres that are equivalent after one stabilization, Note di Mathematica, 20 (1) (2000/2001), 53-63. | MR | Zbl
- ,[6] A construction of 3-manifolds whose homeomorphism classes of Heegaard splittings have polynomial growth, Osaka Journal of Math., 29 (1992), 653-674. | fulltext mini-dml | MR | Zbl
,[7] Identifying tunnel number one knots, J. Math. Soc. Japan, 48 (4) (1996), 667-688. | fulltext mini-dml | MR | Zbl
- - ,[8] On the $\mathbb{Z}_2 \oplus \mathbb{Z}_2$ branched coverings of spatial $K_4$-graphs, Knots 90 (by Walter de Gruyter), Berlin New York (1992), 103-116. | MR | Zbl
,[9] An infinite collection of Heegaard splittings that are equivalent after one stabilization, Mathematisch Annalen, 308 (1997), 65-72. | MR | Zbl
,[10] Dunwoody $3$-manifolds and $(1,1)$-decomposiable knots, Proc. Workshop in pure math (edited by Jongsu Kim and Sungbok Hong), Geometry and Topology, 19 (2000), 193-211.
- ,[11] Two knots with the same $2$-fold branched covering space, Yokohama Math. J., 25 (1977), 91-99. | MR | Zbl
,[12] The knotting of theta curves and other graphs in $S^3$, in Geometry and Topology (edited by McCrory and T. Shlfrin) Marcel Dekker, New York (1987) 325-346. | MR | Zbl
,