Analytic solutions to nonlocal abstract equations
Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 1, pp. 181-198.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In this paper we study the problem of existence of global solutions for some classes of abstract equations, that generalize some type of Klein-Gordon equations, with nonlinear nonlocal terms of Kirchhoff type. We find some conditions that guarantee the existence of such solutions whether in presence or in absence of a conserved energy.
Si considera il problema dell'esistenza di soluzioni globali analitiche per equazioni astratte, in spazi di Hilbert, di tipo Klein-Gordon corrette con termini non locali, del tipo: $$u''+ m(\|u \|^{2}_{H}, \langle Au,u \rangle ) Au + n(\|u \|^{2}_{H}, \langle Au,u \rangle)u=0 .$$ In particolare si individuano classi di condizioni sulle funzioni m ed n (sia in presenza che in assenza di energie conservate) che garantiscono l'esistenza di tali soluzioni.
@article{BUMI_2003_8_6B_1_a10,
     author = {Ghisi, Marina},
     title = {Analytic solutions to nonlocal abstract equations},
     journal = {Bollettino della Unione matematica italiana},
     pages = {181--198},
     publisher = {mathdoc},
     volume = {Ser. 8, 6B},
     number = {1},
     year = {2003},
     zbl = {1177.81035},
     mrnumber = {875159},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BUMI_2003_8_6B_1_a10/}
}
TY  - JOUR
AU  - Ghisi, Marina
TI  - Analytic solutions to nonlocal abstract equations
JO  - Bollettino della Unione matematica italiana
PY  - 2003
SP  - 181
EP  - 198
VL  - 6B
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BUMI_2003_8_6B_1_a10/
LA  - en
ID  - BUMI_2003_8_6B_1_a10
ER  - 
%0 Journal Article
%A Ghisi, Marina
%T Analytic solutions to nonlocal abstract equations
%J Bollettino della Unione matematica italiana
%D 2003
%P 181-198
%V 6B
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BUMI_2003_8_6B_1_a10/
%G en
%F BUMI_2003_8_6B_1_a10
Ghisi, Marina. Analytic solutions to nonlocal abstract equations. Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 1, pp. 181-198. https://geodesic-test.mathdoc.fr/item/BUMI_2003_8_6B_1_a10/

[1] A. Arosio, Averaged evolution equations. The Kirchhoff string and its treatment in scales of Banach Spaces, 27 Workshop on «Functional-analytic methods in complex analysis» (in Proc. Trieste 1993, World Singapore).

[2] A. Arosio-S. Spagnolo, Global existence for abstract evolution equations of weakly hyperbolic type, J. Math. Pures et Appl., 65 (1986), 263-305. | MR | Zbl

[3] S. Bernstein, Sur une classe d'équations fonctionelles aux dérivées partielles, Izv. Akad. Nauk. SSSR, Sér Math., 4 (1940), 17-26. | MR | Zbl

[4] F. Colombini-E. De Giorgi-S. Spagnolo, sur les équations hyperboliques avec des coefficients qui ne dépendent que du temps, Ann. Sc. Norm. Sup. Pisa, 6 (1979), 511-559. | fulltext mini-dml | MR | Zbl

[5] P. D'Ancona-S. Spagnolo, Global solvability for the degenerate Kirchhoff equation with real analytic data, Invent. Math., 108 (1992), 247-262. | MR | Zbl

[6] P. D'Ancona-S. Spagnolo, On an abstract weakly hyperbolic equation modeling the nonlinear vibrating string, Developments in Partial Differential Equations and Applications to Mathematical Physic, Edited by G. Buttazzo et. al. Plenum Press, New-York 1992. | MR | Zbl

[7] M. Ghisi-S. Spagnolo, Global analytic solutions to hyperbolic systems, NODEA, 5 (1998), 245-264. | MR | Zbl

[8] G. Kirchhoff, «Vorlesurngen über Mechanik» Teubner, Leipzig 1883. | Jbk 08.0542.01

[9] S. I. Pohozaev, On a class of quasilinear hyperbolic equations, Mat. Sbornik, 96 (138) (1975) No. 1, 152-166 (Trans. Math. USSR Sbornik, 25 (1975) No. 1). | MR | Zbl

[10] S. Spagnolo, The Cauchy problem for the Kirchhoff equations, Rend. Sem. Fisico Matematico di Milano, 62 (1992), 17-51. | MR | Zbl