Existence and decay in non linear viscoelasticity
Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 1, pp. 1-37.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In this work we study the existence, uniqueness and decay of solutions to a class of viscoelastic equations in a separable Hilbert space H given by \begin{gather*} u_{tt} + M([u]) Au - \int_{0}^{t} g(t-\tau) N([u]) Au \, d\tau = 0, \quad \text{ in } L^{2}(0, T; H) \\ u(0)=u_{0}, \quad u_{t}(0)=u_{1} \end{gather*} where by [u(t)] we are denoting \begin{equation*} [u(t)]= \left( ( u(t), u_{t}(t), (Au(t), u_{t}(t)), \|A^{\frac{1}{2}} u(t) \|^{2}, \|A^{\frac{1}{2}} u_{t}(t) \|^{2}, \|A u(t) \|^{2} \right) \in \mathbb{R}^{5} \end{equation*} A:D(A)HH is a nonnegative, self-adjoint operator, M, N:R5R are C2- functions and g:RR is a C3-function with appropriates conditions. We show that there exists global solution in time for small initial data. When [u(t)]=A12u2 and N=1, we show the global existence for large initial data (u0,u1) taken in the space D(A)×D(A1/2) provided they are close enough to Gevrey data. Uniform rate of decay is also proved.
In questo lavoro si studia l'esistenza, l'unicità e il decadimento di soluzioni a una classe di equazioni viscoelastiche in uno spazio di Hilbert H separabile, dato da: \begin{gather*} u_{tt} + M([u]) Au - \int_{0}^{t} g(t-\tau) N([u]) Au \, d\tau = 0, \quad \text{ in } L^{2}(0, T; H) \\ u(0)=u_{0}, \quad u_{t}(0)=u_{1} \end{gather*} dove con [u(t)] si denota \begin{equation*} [u(t)]= \left( ( u(t), u_{t}(t), (Au(t), u_{t}(t)), \|A^{\frac{1}{2}} u(t) \|^{2}, \|A^{\frac{1}{2}} u_{t}(t) \|^{2}, \|A u(t) \|^{2} \right) \in \mathbb{R}^{5} \end{equation*} A:D(A)HH è un operatore autoaggiunto non-negativo, M, N:R5R sono funzioni di classe C2 e g:RR è una funzione di classe C3 verificante condizioni opportune. Mostriamo che esistono soluzioni globali nel tempo per piccoli dati iniziali. Quando [u(t)]=A12u2, M:RR e N=1, si mostra l'esistenza globale per grandi dati iniziali (u0,u1) presi negli spazi D(A)×D(A1/2) a condizione che siano abbastanza prossimi a dati analitici. È anche dimostrato un tasso uniforme di decadimento.
@article{BUMI_2003_8_6B_1_a0,
     author = {Mu\~noz Rivera, Jaime E. and Quispe G\'omez, F\'elix P.},
     title = {Existence and decay in non linear viscoelasticity},
     journal = {Bollettino della Unione matematica italiana},
     pages = {1--37},
     publisher = {mathdoc},
     volume = {Ser. 8, 6B},
     number = {1},
     year = {2003},
     zbl = {1177.74082},
     mrnumber = {2699},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BUMI_2003_8_6B_1_a0/}
}
TY  - JOUR
AU  - Muñoz Rivera, Jaime E.
AU  - Quispe Gómez, Félix P.
TI  - Existence and decay in non linear viscoelasticity
JO  - Bollettino della Unione matematica italiana
PY  - 2003
SP  - 1
EP  - 37
VL  - 6B
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BUMI_2003_8_6B_1_a0/
LA  - en
ID  - BUMI_2003_8_6B_1_a0
ER  - 
%0 Journal Article
%A Muñoz Rivera, Jaime E.
%A Quispe Gómez, Félix P.
%T Existence and decay in non linear viscoelasticity
%J Bollettino della Unione matematica italiana
%D 2003
%P 1-37
%V 6B
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BUMI_2003_8_6B_1_a0/
%G en
%F BUMI_2003_8_6B_1_a0
Muñoz Rivera, Jaime E.; Quispe Gómez, Félix P. Existence and decay in non linear viscoelasticity. Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 1, pp. 1-37. https://geodesic-test.mathdoc.fr/item/BUMI_2003_8_6B_1_a0/

[1] A. Arosio-S. Spagnolo, Global solution of the Cauchy problem for a nonlinear hyperbolic equation, Nonlinear partial differential equations an their applications, College de France Seminar, Edited by H. Brezis & J. L. Lions, Pitman, London, 6 (1984), 1-26. | Zbl

[2] S. Bernstein, Sur une classe d'equations fonctionnelles aux dérivées partielles, Izv. Akad. Nauk SSSR, ser. Mat., 4 (1940), 17-26 (Math. Rev. 2 No. 102). | Jbk 66.0471.01 | MR | Zbl

[3] C. M. Dafermos, An Abstract Volterra Equation with application to linear Viscoelasticity, J. Differential Equations, 7 (1970), 554-589. | MR | Zbl

[4] C. M. Dafermos-J. A. Nohel, Energy methods for non linear hyperbolic Volterra integro-differential equation, Comm. PDE, 4 (1979), 219-278. | MR | Zbl

[5] P. D'Ancona-S. Spagnolo, Global solvability for the degenerate Kirchhoff equation with real analytic data, Invent. Math., 108 (1992), 247-262. | MR | Zbl

[6] R. W. Dickey, Infinite systems of nonlinear oscillation equation related to the string, Proc. Amer. Math. Soc., 23 (1969), 459-468. | MR | Zbl

[7] R. W. Dickey, Infinite systems of nonlinear oscillation equations with linear damping, SIAM Journal of Applied Mathematics, 19, No. 1 (1970), 208-214. | MR | Zbl

[8] I. M. Gelfand-N. Ya. Vilenkin, Fonctions Généralisées, IV, Academic Press, 1961.

[9] J. M. Greenberg-S. C. Hu, The initial value problem for the stretched string, Quarterly of Applied Mathematics (1980), 289-311. | MR | Zbl

[10] D. Huet, Décomposition spectrale et opérateurs, Presses Universitaires de France, 1977. | MR | Zbl

[11] J. E. Lagnese, Asymptotic energy estimates for Kirchhoff plates subject to weak viscoelastic damping, International series of Numerical Mathematics, 91, 1989, Birhäuser, Verlag, Bassel. | MR | Zbl

[12] J. L. Lions, Quelques méthodes de resolution des problèmes aux limites non lineares, Dunod Gauthier Villars, Paris, 1969. | MR | Zbl

[13] J. L. Lions-R. Dautray, Mathematical Analysis and Numerical Methods for science and Tecnology, 3, Spectral Theory and Applications, Springer Verlag 1985, Masson, Paris, 1988. | Zbl

[14] L. A. Medeiros-M. A. Milla Miranda, On a nonlinear wave equation with damping, Revista de Matemática de la Universidad Complutense de Madrid, 3, No. 2 (1990). | MR | Zbl

[15] G. A. Perla Menzala, On global classical solution of a nonlinear wave equation with damping, Appl. Anal., 10 (1980), 179-195. | MR | Zbl

[16] J. E. Muñoz Rivera, Asymptotic behaviour in Linear Viscoelasticity, Quarterly of Applied Mathematics, III, 4, (1994), 629-648. | Zbl

[17] J. E. Muñoz Rivera, Global Solution on a Quasilinear Wave Equation with Memory, Bollettino U.M.I. (7), 8-b (1994), 289-303. | MR | Zbl

[18] K. Nishihara, Degenerate quasilinear hyperbolic equation with strong damping, Funkcialaj Ekvacioj, 27 (1984), 125-145. | fulltext mini-dml | MR | Zbl

[19] K. Nishihara, Global existence and Asymptotic behaviour of the solution of some quasilinear hyperbolic equation with linear damping, Funkcialaj Ekvacioj, 32 (1989), 343-355. | fulltext mini-dml | MR | Zbl

[20] S. I. Pohožaev, On a class of quasilinear hyperbolic equation, Math. USSR-Sb., 25-1 (1975), 145-158.

[21] M. Renardy-W. J. Hrusa-J. A. Nohel, Mathematical problems in Viscoelasticity, Pitman monograph in Pure and Applied Mathematics, 35, 1987. | MR | Zbl

[22] R. Torrejón-J. Yong, On a Quasilinear Wave Equation with memory, Nonlinear Analysis, Theory and Methods & Applications, 16, 1 (1991), 61-78. | Zbl