An optimality criterion for disjoint bilinear programming and its application to the problem with an acute-angled polytope for a disjoint subset
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2024), pp. 109-136.

Voir la notice de l'article provenant de la source Math-Net.Ru

We formulate and prove an optimality criterion for the disjoint bilinear programming problem and show how it can be efficiently used for solving the problem when one of the disjoint subsets has the structure of an acute-angled polytope. A class of integer and combinatorial problems that can be reduced to the disjoint bilinear programming problem with an acute-angled polytope is presented and it is shown how the considered optimality criterion can be applied.
@article{BASM_2024_1_a7,
     author = {Dmitrii Lozovanu},
     title = {An optimality criterion for disjoint bilinear programming and its application to the problem with an acute-angled polytope for a disjoint subset},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {109--136},
     publisher = {mathdoc},
     number = {1},
     year = {2024},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2024_1_a7/}
}
TY  - JOUR
AU  - Dmitrii Lozovanu
TI  - An optimality criterion for disjoint bilinear programming and its application to the problem with an acute-angled polytope for a disjoint subset
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2024
SP  - 109
EP  - 136
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2024_1_a7/
LA  - en
ID  - BASM_2024_1_a7
ER  - 
%0 Journal Article
%A Dmitrii Lozovanu
%T An optimality criterion for disjoint bilinear programming and its application to the problem with an acute-angled polytope for a disjoint subset
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2024
%P 109-136
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2024_1_a7/
%G en
%F BASM_2024_1_a7
Dmitrii Lozovanu. An optimality criterion for disjoint bilinear programming and its application to the problem with an acute-angled polytope for a disjoint subset. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2024), pp. 109-136. https://geodesic-test.mathdoc.fr/item/BASM_2024_1_a7/

[1] Alarie S., Audet C., Jaumard B., Savard G., “Concavity cuts for disjoint bilinear programming”, Mathematical Programming, 90:2 (2001), 373–398 | DOI | MR | Zbl

[2] Altman M., “Bilinear programming”, Bul. Acad. Polan. Sci., Ser. Sci. Math. Astron. et Phis., 16:9 (1968), 741–746 | MR | Zbl

[3] Andreev E. M., “Intersections of plane bounderies of acute-angled polyhedra”, Math. Notes, 8 (1971), 761–764 | DOI | Zbl

[4] Andreev E.M., “On convex polyhedra in Lobachevskii spaces”, Math. USSR Sb., 10 (1970), 413–440 | DOI | MR

[5] Audet C., Hansen P., Jaumart B., Savard G., “Links between linear bileval and mixed 0-1 programming problem”, Journal of Optimization Theory and Applications, 93:2 (1999) | MR

[6] Boyd S., Vandenberghe L., Convex Optimization, Cambridge University Press, 2004 | MR | Zbl

[7] Chernikov S. N., Linear Inequalities, Nauka, M., 1968 (in Russian) | MR

[8] Coxeter H. S., “Discrete groups generated by reflections”, Ann. Math., 35:3 (1934), 588–621 | DOI | MR | Zbl

[9] Ding X., Al-Khayyal F., “Accelarating convergence of cutting plane algorithms for disjoint bilinear programming”, Journal of Global Optimization, 38:3 (2007), 421–436 | DOI | MR | Zbl

[10] Farkas J., “Uber die theorie der einfachen ungleichungen”, J. reine and angew. Math., 124 (1901), 1–24 | MR

[11] Garey M., Johnson D., Computers and Intractability: A Guide to the Theory of NP-Complectness, Freeman, 1979 | MR

[12] Karp R., “Reducibility among combinatorial problems”, Complexity of Computer Computations, eds. Miler R., Thatcher J., 1972, 83–103 | MR

[13] Khachian L.G., “Polynomial time algorithm in linear programming”, Computational Mathematics and Mathematical Physics, 20 (1980), 51–58 | DOI | MR

[14] Khachian L.G., “On exact solution of the system of linear inequalities and linear programming problem”, Computational Mathematics and Mathematical Physics, 22 (1982), 999–1002 | MR

[15] Lozovanu D., “Duality principle for systems of linear inequalities with a right part that depends on parameters”, Izv. AN SSSR, ser. Techn. Cyb., 6 (1987), 3–13 | MR

[16] Lozovanu D., Extremal-Combinatorial Problems and Algorithms for their Solving, Stiinta, Chisinau, 1991 (in Russian) | MR

[17] Lozovanu D., “Parametrical approach for studying and solving bilinear programming problem”, Proceedings of the International Workshop on Global Optimization (San Jose, Almeria, Spain, September 18-22th, 2005), 2005, 165–170

[18] Lozovanu D., “Parametrical approach for bilinear programming and its applications for solving integer and combinatorial optimization problems”, The Bulletin of Academy of Sciences of Moldova. Ser. Mathematics, 2007, no. 3(55), 91–101 | MR | Zbl

[19] Schrijver A., Theory of Linear and Integer Programming, Joun Wiley and Sons, New York, 1990 | MR

[20] White D., “A linear programming approach to solve bilinear program”, Mathematical Programming, 56:1-3 (1992), 45–50 | DOI | MR | Zbl