Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2024_1_a4, author = {David Cheban and Zhenxin Liu}, title = {The comparability of motions in dynamical systems and recurrent solutions of {(S)PDEs}}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {53--83}, publisher = {mathdoc}, number = {1}, year = {2024}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2024_1_a4/} }
TY - JOUR AU - David Cheban AU - Zhenxin Liu TI - The comparability of motions in dynamical systems and recurrent solutions of (S)PDEs JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2024 SP - 53 EP - 83 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2024_1_a4/ LA - en ID - BASM_2024_1_a4 ER -
%0 Journal Article %A David Cheban %A Zhenxin Liu %T The comparability of motions in dynamical systems and recurrent solutions of (S)PDEs %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2024 %P 53-83 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BASM_2024_1_a4/ %G en %F BASM_2024_1_a4
David Cheban; Zhenxin Liu. The comparability of motions in dynamical systems and recurrent solutions of (S)PDEs. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2024), pp. 53-83. https://geodesic-test.mathdoc.fr/item/BASM_2024_1_a4/
[1] P. Billingsley, Convergence of Probability Measures, Wiley Series in Probability and Statistics: Probability and Statistics. A Wiley-Interscience Publication, Second edition, John Wiley Sons, Inc., New York, 1999, x+277 pp. | MR
[2] S. Bochner, “A new approach to almost periodicity”, Proc. Nat. Acad. Sci. U.S.A., 48 (1962), 2039–2043 | DOI | MR | Zbl
[3] Extensions of Minimal Transformation Group, Sijthoff Noordhoff, Alphen aan den Rijn, 1979
[4] T. Caraballo and D. Cheban, “Almost periodic and almost automorphic solutions of linear differential/difference equations without Favard's separation condition. I”, J. Differential Equations, 246 (2009), 108–128 | DOI | MR | Zbl
[5] T. Caraballo and D. Cheban, “Almost periodic and almost automorphic solutions of linear differential/difference equations without Favard's separation condition. II”, J. Differential Equations, 246 (2009), 1164–1186 | DOI | MR | Zbl
[6] T. Caraballo and D. Cheban, “Levitan/Bohr almost periodic and almost automorphic solutions of second-order monotone differential equations”, J. Differential Equations, 251 (2011), 708–727 | DOI | MR | Zbl
[7] T. Caraballo and D. Cheban, “Almost periodic and almost automorphic solutions of linear differential equations”, Discrete Contin. Dyn. Syst., 33 (2013), 1857–882 | DOI | MR
[8] D. Cheban, “Levitan almost periodic and almost automorphic solutions of $V$-monotone differential equations”, J. Dynam. Differential Equations, 20 (2008), 69–697 | DOI | MR
[9] D. Cheban, Global Attractors of Non-autonomous Dynamical and Control Systems, Interdisciplinary Mathematical Sciences, 18, Second edition, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015, xxvi+589 pp. | DOI | MR | Zbl
[10] D. Cheban and Z. Liu, “Poisson stable motions of monotone nonautonomous dynamical systems”, Sci. China Math., 62 (2019), 1391–1418 | DOI | MR | Zbl
[11] D. Cheban and Z. Liu, “Periodic, quasi-periodic, almost periodic, almost automorphic, Birkhoff recurrent and Poisson stable solutions for stochastic differential equations”, J. Differential Equations, 269 (2020), 3652–3685 | DOI | MR | Zbl
[12] D. Cheban and Z. Liu, “Averaging principle on infinite intervals for stochastic ordinary differential equations”, Electron. Res. Arch., 29 (2021), 2791–2817 | DOI | MR | Zbl
[13] D. Cheban and C. Mammana, “Invariant manifolds, almost periodic and almost automorphic solutions of second-order monotone equations”, Int. J. Evol. Equ., 1 (2005), 319–343 | MR | Zbl
[14] D. Cheban and B. Schmalfuss, “Invariant manifolds, global attractors, almost automrphic and almost periodic solutions of non-autonomous differential equations”, J. Math. Anal. Appl., 340 (2008), 374–393 | DOI | MR | Zbl
[15] M. Cheng and Z. Liu, “The second Bogolyubov theorem and global averaging principle for SPDEs with monotone coefficients”, SIAM J. Math. Anal., 55 (2023), 1100–1144 | DOI | MR | Zbl
[16] M. Cheng, Z. Liu, and M. Röckner, “Averaging principle for stochastic complex Ginzburg-Landau equations”, J. Differential Equations, 368 (2023), 58–104 | DOI | MR | Zbl
[17] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, 1992, xviii+454 pp. | MR | Zbl
[18] R. M. Dudley, Real Analysis and Probability, Revised reprint of the 1989 original, Cambridge Studies in Advanced Mathematics, 74, Cambridge University Press, Cambridge, 2002, x+555 pp. | MR | Zbl
[19] I. I. Gihman and A. V. Skorohod, Stochastic Differential Equations, Translated from Russian by Kenneth Wickwire, Ergebnisse der Mathematik und ihrer Grenzgebiete, 72, Springer-Verlag, New York-Heidelberg, 1972, viii+354 pp. | MR | Zbl
[20] J. L. Kelley, General Topology, Graduate Texts in Mathematics, 27, Springer-Verlag, New York-Berlin, 1975, xiv+298 pp. ; Reprint:, Van Nostrand, Toronto, Ont., 1955 | MR | Zbl | Zbl
[21] B. M. Levitan and V. V. Zhikov, Almost Periodic Functions and Differential Equations, Translated from Russian by L. W. Longdon, Cambridge University Press, Cambridge-New York, 1982, xi+211 pp. | MR | Zbl
[22] X. Liu and Z. Liu, “Poisson stable solutions for stochastic differential equations with Lévy noise”, Acta Math. Sin. (Engl. Ser.), 38 (2022), 22–54 | DOI | MR | Zbl
[23] H. Poincaré, Methodes nouvelles de la mécanique célèste, v. 1, Gauthier-Villars, Paris, 1892 (in French) | MR
[24] G. R. Sell, Lectures on Topological Dynamics and Differential Equations, Van Nostrand Reinhold math. studies, 2, Van Nostrand–Reinbold, London, 1971 | MR
[25] B. A. Shcherbakov, Topologic Dynamics and Poisson Stability of Solutions of Differential Equations, Ştiinţa, Chişinău, 1972, 231 pp. (in Russian) | MR
[26] Differ. Equ., 11:7 (1975), 937–943 | MR | Zbl
[27] B. A. Shcherbakov, Poisson Stability of Motions of Dynamical Systems and Solutions of Differential Equations, Ştiinţa, Chişinău, 1985, 147 pp. (in Russian) | MR
[28] Differential Equations, 13:5 (1978), 618–624 | MR | Zbl
[29] Differential Equations, 13:6 (1978), 755–758 | MR | Zbl
[30] W. Shen and Y. Yi, Almost automorphic and almost periodic dynamics in skew-product semiflows, Mem. Amer. Math. Soc., 136, no. 647, 1998, x+93 pp. | MR
[31] K. S. Sibirsky, Introduction to Topological Dynamics, Translated from Russian by Leo F. Boron, Noordhoff International Publishing, Leiden, 1975, ix+163 pp. | MR | Zbl