Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2024_1_a3, author = {T. S. Doan and P. E. Kloeden}, title = {Asymptotic behaviour of non-autonomous {Caputo} fractional differential equations with a one-sided dissipative vector field}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {44--52}, publisher = {mathdoc}, number = {1}, year = {2024}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2024_1_a3/} }
TY - JOUR AU - T. S. Doan AU - P. E. Kloeden TI - Asymptotic behaviour of non-autonomous Caputo fractional differential equations with a one-sided dissipative vector field JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2024 SP - 44 EP - 52 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2024_1_a3/ LA - en ID - BASM_2024_1_a3 ER -
%0 Journal Article %A T. S. Doan %A P. E. Kloeden %T Asymptotic behaviour of non-autonomous Caputo fractional differential equations with a one-sided dissipative vector field %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2024 %P 44-52 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BASM_2024_1_a3/ %G en %F BASM_2024_1_a3
T. S. Doan; P. E. Kloeden. Asymptotic behaviour of non-autonomous Caputo fractional differential equations with a one-sided dissipative vector field. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2024), pp. 44-52. https://geodesic-test.mathdoc.fr/item/BASM_2024_1_a3/
[1] Cong, N.D., Tuan, H.T., “Generation of nonlocal dynamical systems by fractional differential equations”, J. Integral Equations Appl., 29 (2017), 585–608 | DOI | MR | Zbl
[2] Cong, N.D., Tuan, H.T., Tinh, H., “On asymptotic properties of solutions to fractional differential equations”, J. Math. Anal. Applns., 484 (2020), 123759 | DOI | MR | Zbl
[3] Cui, H., Kloeden, P.E., Skew-product attractors of non-autonomous Caputo fractional differential equations, submitted | MR
[4] Diethelm, K., The Analysis of Fractional Differential Equations, Lecture Notes in Mathematics, 2004, Springer-Verlag, Heidelberg, 2010 | DOI | MR | Zbl
[5] Doan, T.S., Kloeden, P.E., “Semi-dynamical systems generated by autonomous Caputo fractional differential equations”, Vietnam Journal of Mathematics, 49 (2021), 1305–1315 | DOI | MR | Zbl
[6] Doan, T.S., Kloeden, P.E., “Attractors of Caputo fractional differential equations with triangular vector field”, Fract. Calc. Anal. Applns., 25 (2022) | DOI | MR | Zbl
[7] Doan, T.S., Kloeden, P.E., “Attractors of Caputo semi-dynamical systems”, Fract. Calc. Anal. Applns., 2024 (to appear) | MR
[8] Doan, T.S., Kloeden, P.E., Tuan, H.T., Attractors of Caputo fractional differential equations, book manuscript, in preparation
[9] Kloeden, P.E., “An elementary inequality for dissipative Caputo fractional differential equations”, Fract. Calc. Appl. Anal., 2023 | DOI | MR
[10] Kloeden, P.E., Rasmussen, M., Nonautonomous Dynamical Systems, American Mathematical Society, Providence, 2011 | MR | Zbl
[11] Kloeden, P.E., Yang, M.H., Introduction to Nonautonomous Dynamical Systems and their Attractors, World Scientific Publishing Co. Inc, Singapore, 2021 | MR | Zbl
[12] Miller, R.S., Sell, G.R., Volterra Integral Equations and Topological Dynamics, Memoir Amer. Math. Soc., 102, Providence, 1970 | MR | Zbl
[13] Sell, G.R., Topological Dynamics and Ordinary Differential Equations, Van Nostrand Reinhold Mathematical Studies, London, 1971 | MR | Zbl