Asymptotic behaviour of non-autonomous Caputo fractional differential equations with a one-sided dissipative vector field
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2024), pp. 44-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

A non-autonomous Caputo fractional differential equation of order α(0,1) in Rd with a driving system {ϑt}tR on a compact base space P generates a skew-product flow on Cα×P, where Cα is the space of continuous functions f : R+ Rd with a weighted norm giving uniform convergence on compact time subsets. It was shown by Cui Kloeden [3] to have an attractor when the vector field of the Caputo FDE satisfies a uniform dissipative vector field. This attractor is closed, bounded and invariant in Cα×P and attracts bounded subsets of Cα consisting of constant initial functions. The structure of this attractor is investigated here in detail for an example with a vector field satisfying a stronger one-sided dissipative Lipschitz condition. In particular, the component sets of the attractor are shown to be singleton sets corresponding to a unique entire solution of the skew-product flow. Its evaluation on Rd is a unique entire solution of the Caputo FDE, which is both pullback and forward attracting.
@article{BASM_2024_1_a3,
     author = {T. S. Doan and P. E. Kloeden},
     title = {Asymptotic behaviour of non-autonomous {Caputo} fractional differential equations with a one-sided dissipative vector field},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {44--52},
     publisher = {mathdoc},
     number = {1},
     year = {2024},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2024_1_a3/}
}
TY  - JOUR
AU  - T. S. Doan
AU  - P. E. Kloeden
TI  - Asymptotic behaviour of non-autonomous Caputo fractional differential equations with a one-sided dissipative vector field
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2024
SP  - 44
EP  - 52
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2024_1_a3/
LA  - en
ID  - BASM_2024_1_a3
ER  - 
%0 Journal Article
%A T. S. Doan
%A P. E. Kloeden
%T Asymptotic behaviour of non-autonomous Caputo fractional differential equations with a one-sided dissipative vector field
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2024
%P 44-52
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2024_1_a3/
%G en
%F BASM_2024_1_a3
T. S. Doan; P. E. Kloeden. Asymptotic behaviour of non-autonomous Caputo fractional differential equations with a one-sided dissipative vector field. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2024), pp. 44-52. https://geodesic-test.mathdoc.fr/item/BASM_2024_1_a3/

[1] Cong, N.D., Tuan, H.T., “Generation of nonlocal dynamical systems by fractional differential equations”, J. Integral Equations Appl., 29 (2017), 585–608 | DOI | MR | Zbl

[2] Cong, N.D., Tuan, H.T., Tinh, H., “On asymptotic properties of solutions to fractional differential equations”, J. Math. Anal. Applns., 484 (2020), 123759 | DOI | MR | Zbl

[3] Cui, H., Kloeden, P.E., Skew-product attractors of non-autonomous Caputo fractional differential equations, submitted | MR

[4] Diethelm, K., The Analysis of Fractional Differential Equations, Lecture Notes in Mathematics, 2004, Springer-Verlag, Heidelberg, 2010 | DOI | MR | Zbl

[5] Doan, T.S., Kloeden, P.E., “Semi-dynamical systems generated by autonomous Caputo fractional differential equations”, Vietnam Journal of Mathematics, 49 (2021), 1305–1315 | DOI | MR | Zbl

[6] Doan, T.S., Kloeden, P.E., “Attractors of Caputo fractional differential equations with triangular vector field”, Fract. Calc. Anal. Applns., 25 (2022) | DOI | MR | Zbl

[7] Doan, T.S., Kloeden, P.E., “Attractors of Caputo semi-dynamical systems”, Fract. Calc. Anal. Applns., 2024 (to appear) | MR

[8] Doan, T.S., Kloeden, P.E., Tuan, H.T., Attractors of Caputo fractional differential equations, book manuscript, in preparation

[9] Kloeden, P.E., “An elementary inequality for dissipative Caputo fractional differential equations”, Fract. Calc. Appl. Anal., 2023 | DOI | MR

[10] Kloeden, P.E., Rasmussen, M., Nonautonomous Dynamical Systems, American Mathematical Society, Providence, 2011 | MR | Zbl

[11] Kloeden, P.E., Yang, M.H., Introduction to Nonautonomous Dynamical Systems and their Attractors, World Scientific Publishing Co. Inc, Singapore, 2021 | MR | Zbl

[12] Miller, R.S., Sell, G.R., Volterra Integral Equations and Topological Dynamics, Memoir Amer. Math. Soc., 102, Providence, 1970 | MR | Zbl

[13] Sell, G.R., Topological Dynamics and Ordinary Differential Equations, Van Nostrand Reinhold Mathematical Studies, London, 1971 | MR | Zbl