On the order of recursive differentiability of finite binary quasigroups
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2023), pp. 103-106.

Voir la notice de l'article provenant de la source Math-Net.Ru

The recursive derivatives of an algebraic operation are defined in [1], where they appear as control mappings of complete recursive codes. It is proved in [1], in particular, that the recursive derivatives of order up to r of a finite binary quasigroup (Q,) are quasigroup operations if and only if (Q,) defines a recursive MDS-code of length r+3. The author of the present note gives an algebraic proof of an equivalent statement: a finite binary quasigroup (Q,) is recursively r-differentiable (r0) if and only if the system consisting of its recursive derivatives of order up to r and of the binary selectors, is orthogonal. This involves the fact that the maximum order of recursive differentiability of a finite binary quasigroup of order q does not exceed q2.
@article{BASM_2023_3_a8,
     author = {Parascovia Syrbu},
     title = {On the order of recursive differentiability of finite binary quasigroups},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {103--106},
     publisher = {mathdoc},
     number = {3},
     year = {2023},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2023_3_a8/}
}
TY  - JOUR
AU  - Parascovia Syrbu
TI  - On the order of recursive differentiability of finite binary quasigroups
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2023
SP  - 103
EP  - 106
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2023_3_a8/
LA  - en
ID  - BASM_2023_3_a8
ER  - 
%0 Journal Article
%A Parascovia Syrbu
%T On the order of recursive differentiability of finite binary quasigroups
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2023
%P 103-106
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2023_3_a8/
%G en
%F BASM_2023_3_a8
Parascovia Syrbu. On the order of recursive differentiability of finite binary quasigroups. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2023), pp. 103-106. https://geodesic-test.mathdoc.fr/item/BASM_2023_3_a8/

[1] Couselo E., Gonzalez S., Markov V., Nechaev A., “Recursive MDS-codes and recursively differentiable quasigroups”, Discret. Mat., 10:2 (1998), 3–29 (Russian) | MR | Zbl

[2] Markov V., Nechaev A., Skazhenik S., Tveritinov E., “Pseudogeometries with clusters and an example of a recursive $[4, 2, 3]_{42}$-code”, J. Math. Sci., 163:5 (2009), 563–571 | DOI | MR | Zbl

[3] Couselo E., Gonzalez S., Markov V., Nechaev A., “Parameters of recursive MDS-codes”, Discrete Math. Appl., 10:5 (2000), 433–454 | DOI | MR

[4] Abashin A.S., “Linear recursive MDS-codes of dimention 2 and 3”, Discrete Math. Appl., 12:3 (2000), 319–332 | DOI | MR | Zbl

[5] Izbash V., Syrbu P., “Recursively differentiable quasigroups and complete recursive codes”, Comment. Math. Univ. Carolin., 45:2 (2004), 257–263 | MR | Zbl

[6] Syrbu P., Cuzneţov E., “On recursively differentiable k-quasigroups”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 99:2 (2022), 68–75 | MR

[7] Keedwell A.D., Denes J., Latin Squares and Their Applications, Second edition, North Holland, 2015, 424 pp. | MR

[8] Belyavskaya G.B., “Recursively $r$-differentiable quasigroups within $S$-systems and MDS-codes”, Quasigroups and Related Systems, 20:2 (2012), 157–168 | MR | Zbl