Exact solutions to differential equations with different arguments
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2023), pp. 96-102.

Voir la notice de l'article provenant de la source Math-Net.Ru

Various linear and non-linear first-order differential equations with different arguments are considered. Exact solutions to these equations are provided. Systems of two coupled linear first-order differential equations are also solved explicitly and exactly.
@article{BASM_2023_3_a7,
     author = {Mario Lefebvre},
     title = {Exact solutions to differential equations with different arguments},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {96--102},
     publisher = {mathdoc},
     number = {3},
     year = {2023},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2023_3_a7/}
}
TY  - JOUR
AU  - Mario Lefebvre
TI  - Exact solutions to differential equations with different arguments
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2023
SP  - 96
EP  - 102
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2023_3_a7/
LA  - en
ID  - BASM_2023_3_a7
ER  - 
%0 Journal Article
%A Mario Lefebvre
%T Exact solutions to differential equations with different arguments
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2023
%P 96-102
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2023_3_a7/
%G en
%F BASM_2023_3_a7
Mario Lefebvre. Exact solutions to differential equations with different arguments. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2023), pp. 96-102. https://geodesic-test.mathdoc.fr/item/BASM_2023_3_a7/

[1] Evans D.J., Raslan K.R., “The Adomian decomposition method for solving delay differential equations”, International Journal of Computer Mathematics, 82 (2005), 49–54 | DOI | MR | Zbl

[2] Rangkuti Y.M., Noorani M.S.M., “The exact solution of delay differential equations using coupling variational iteration with Taylor series and small term”, Bulletin of Mathematics, 4:1 (2012), 1–15

[3] Rihan F.A., Delay Differential Equations and Applications to Biology, Springer, Singapore, 2021 | DOI | MR

[4] Smith H., An Introduction to Delay Differential Equations with Applications to the Life Sciences, Springer, New York, 2011 | DOI | MR | Zbl