Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2023_3_a4, author = {Nora Fetouci}, title = {Approximation of fixed points in convex $G$-metric spaces}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {67--79}, publisher = {mathdoc}, number = {3}, year = {2023}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2023_3_a4/} }
Nora Fetouci. Approximation of fixed points in convex $G$-metric spaces. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2023), pp. 67-79. https://geodesic-test.mathdoc.fr/item/BASM_2023_3_a4/
[1] M. Aggarwal, R. Chugh and R. Kamal, “Suzuki-fixed point results in $G$-metric spaces and applications”, Int. J. Comp. Appl., 47:12 (2012), 14–17
[2] E. Karapinar and R. Agarwal, “Further fixed point results on $G$-metric spaces”, Fixed Point Theory. Appl., 154 (2013), 1–14 | MR
[3] G. Modi, B. Bhatt, “Fixed point results for weakly compatible mappings in convex $G$-metric space”, Int. J. Maths. Stat. Inven., 2:11 (2014), 34–38
[4] \sc Z. Mustafa, A new structure for generalized metric spaces with applications to fixed point theory, PHD Thesis, the University of Newcastle, Australia, 2005
[5] Z. Mustafa, H. Obiedat, F. Awawdeh, “Some fixed point theorem for mapping on complete $G$-metric spaces”, Fixed Point Theory. Appl., 2008 (2008), 1–12 | DOI | MR
[6] Z. Mustafa, B. Sims, “A new approach to generalized metric spaces”, J. Nonlinear and Convex Anal., 7:2 (2006), 289–297 | MR | Zbl
[7] Z. Mustafa, B. Sims, “Fixed point theorems for contractive mappings in $G$-metric spaces”, Fixed Point Theory. Appl., 2009 (2009), 1–10 | DOI | MR
[8] W. Takahashi, “A convexity in metric space and nonexpansive mappings”, Kodai Math. Sem. Rep., 22 (1970), 142–149 | DOI | MR | Zbl
[9] I. Yildirim, S. H. Khan, “Convexity in $G$-metric spaces and approximation of fixed points by Mann iterative process”, Int. J. Nonlinear Anal. Appl., 13:1 (2022), 1957–1964